Диагонали ромба пересекаются под прямым углом. Если на диагоналях ромба от точки их пересечения отложены четыре равных отрезка, то в полученном четырехугольника получится, что диагонали равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы четырехугольника пополам (то, что делят углы пополам видно из того, что диагоналями четырёхугольник делится на 4 равных равнобедренных прямоугольных треугольника, у которых катеты -это половина диагоналей, а гипотенуза - сторона четырехугольника; следовательно углы при гипотенузе равны по 45 градусов). Углы полученного четырехугольника - прямые. Все это относится к свойствам квадрата, значит четырёхугольник -квадрат, что и требовалось доказать.
Диагонали ромба пересекаются под прямым углом. Если на диагоналях ромба от точки их пересечения отложены четыре равных отрезка, то в полученном четырехугольника получится, что диагонали равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы четырехугольника пополам (то, что делят углы пополам видно из того, что диагоналями четырёхугольник делится на 4 равных равнобедренных прямоугольных треугольника, у которых катеты -это половина диагоналей, а гипотенуза - сторона четырехугольника; следовательно углы при гипотенузе равны по 45 градусов). Углы полученного четырехугольника - прямые. Все это относится к свойствам квадрата, значит четырёхугольник -квадрат, что и требовалось доказать.
Для двух концентрических окружностей:
r1-r2=h
P1-P2=1
P1-P2 =2п(r1-r2) <=> 2пh=1 <=> h= 1/2п (км)
Прямые (параллельные) участки не влияют на разность периметров. Суммарный поворот составляет 360 (мы возвращаемся в исходное положение).
x1, x2, y1, y2 ... - радиусы поворота
x1-x2 = y1-y2 ... =h
a_x, a_y ... - соответствующие углы поворота
a_x + a_y ... =360
P1-P2 = пx1*a_x/180 - пx2*a_x/180 + пy1*a_y/180 - пy2*a_y/180 ... <=>
hпa_x/180 + hпa_y/180 ... =1 <=>
hп (a_x + a_y ...)/180 =1 <=>
hп 360/180 =1 <=>
h= 1/2п (км) ~159 м