для нахождения радиуса строим два прямоугольных треугольника. первый: rcd и второй rbd
нам известно, что отрезок ac=20см, bc=12см, dc=17см.
так как rc=rb+bc; rb=ab/2; ab=ac-bc, получаем rc=(ac-bc)/2+bc=(20-12)/2+12=16см
по теореме пифагора находим катет rd=
применяем вновь теорему пифагора, для того чтобы найти гипотенузу db в треугольнике rbd
rb=ab/2; ab=ac-bc, получаем rb=(ac-bc)/2=(20-12)/2=4см
гипотенузу db так же является искомым радиусом окружности.
ответ: r=7см
Найти:
А) длину отрезка AB:
|АВ| = √((-5-3)²+(6+4)²+(0-2)²) = √(64+100+4) = √168 = 2√42 ≈ 12,96148.
Б) координаты средины отрезка АВ (пусть это точка С):
С = ((3-5)/2=-1; (-4+6)/2=1; (2+0)/2=1) = (-1; 1; 1).
В) точку оси Оx (пусть это точка М), равноудаленную от точек А и В.
Обозначим координаты точки М(x, y, z).
По заданию Мy = 0, Мz = 0, АМ² = ВМ².
АМ² = (х-3)²+(0-(-4))²+(0-2)² = х²-6х+9+16+4 = х²-6х+29.
ВМ² = (х+5)²+(0-6)²+(0-0)² = х²+10х+25+36+0 = х²+10х+61.
Приравняем: х²-6х+29 = х²+10х+61.
16х = -32.
х = -32/16 = -2.
ответ: точка М(-2; 0; 0).
для нахождения радиуса строим два прямоугольных треугольника. первый: rcd и второй rbd
нам известно, что отрезок ac=20см, bc=12см, dc=17см.
так как rc=rb+bc; rb=ab/2; ab=ac-bc, получаем rc=(ac-bc)/2+bc=(20-12)/2+12=16см
по теореме пифагора находим катет rd=
применяем вновь теорему пифагора, для того чтобы найти гипотенузу db в треугольнике rbd
rb=ab/2; ab=ac-bc, получаем rb=(ac-bc)/2=(20-12)/2=4см
гипотенузу db так же является искомым радиусом окружности.
ответ: r=7см