Дана окружность с центром в точке О . Её радиус R=20 см .
АМ и ВМ - касательные к окружности. По свойству, они перпендикулярны радиусу R , то есть АМ⊥ОА и ВМ⊥ОВ .
Дуга ВА=120° ⇒ ∠АОВ=120° ,как центральный угол, опирающийся на дугу ВА .
ОМ - биссектриса ∠АОВ ( по свойству ) ⇒ ∠АОМ=∠ВОМ=120°:2=60°
ΔАОМ - прямоугольный и ∠АМО=180°-90°-60°=30° .
В прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы ⇒ ОА=1/2*ОМ ⇒
ОМ=2*ОА=2*20=40 см - это расстояние от точки М до центра окружности .
Точка L лежит на окружности с центром D радиусом CD (DL=CD, ГМТ удаленных от данной точки на радиус).
Точка L лежит на окружности с центром A диаметром BK (BLK=90, ГМТ из которых диаметр виден под прямым углом).
Окружности пересекаются в точках L1 и L2.
1) △AL1D - равносторонний (радиусы окружностей равны стороне квадрата), L1AD=60
BAL1 =90-60 =30
AKL1 =BKL1 =BAL1/2 =15° (вписанный равен половине центрального, опирающегося на ту же дугу)
2) Точки L1 и L2 симметричны относительно AD (по построению) => ∠BKL2=∠KBL1
AKL2 =KBL1 =90-BKL1 =90-15 =75°
Дана окружность с центром в точке О . Её радиус R=20 см .
АМ и ВМ - касательные к окружности. По свойству, они перпендикулярны радиусу R , то есть АМ⊥ОА и ВМ⊥ОВ .
Дуга ВА=120° ⇒ ∠АОВ=120° ,как центральный угол, опирающийся на дугу ВА .
ОМ - биссектриса ∠АОВ ( по свойству ) ⇒ ∠АОМ=∠ВОМ=120°:2=60°
ΔАОМ - прямоугольный и ∠АМО=180°-90°-60°=30° .
В прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы ⇒ ОА=1/2*ОМ ⇒
ОМ=2*ОА=2*20=40 см - это расстояние от точки М до центра окружности .
Точка L лежит на окружности с центром D радиусом CD (DL=CD, ГМТ удаленных от данной точки на радиус).
Точка L лежит на окружности с центром A диаметром BK (BLK=90, ГМТ из которых диаметр виден под прямым углом).
Окружности пересекаются в точках L1 и L2.
1) △AL1D - равносторонний (радиусы окружностей равны стороне квадрата), L1AD=60
BAL1 =90-60 =30
AKL1 =BKL1 =BAL1/2 =15° (вписанный равен половине центрального, опирающегося на ту же дугу)
2) Точки L1 и L2 симметричны относительно AD (по построению) => ∠BKL2=∠KBL1
AKL2 =KBL1 =90-BKL1 =90-15 =75°