Объяснение (подробно): Нарисуем треугольник АВС. Пусть АВ=3√7, ВС=12, О- точка пересечения биссектрис из А и С.
Рассмотрим треугольник АОС. Угол ЕОС - внешний. По свойству внешнего угла сумма двух внутренних углов, не смежных с ним, равна 30°. Эти углы - половины углов при стороне АС треугольника АВС .Поэтому угол ВАС+ВСА=60°. Из суммы углов треугольника угол АВС=180°-60°=120°.
Одна из формул площади треугольника S=0,5•a•b•sinα, где а и b - стороны, α – угол между ними. S (ABC)=0,5•3√7•12•√3/2=9√21 (см²)
=========
Задача решена по данному в вопросе условию. Возможно, условие дано с ошибкой и одна из сторон не 3√7, а 7√3. Тогда площадь будет иной. Вычислите ее самостоятельно.
ответ: 9√21 (см²)
Объяснение (подробно): Нарисуем треугольник АВС. Пусть АВ=3√7, ВС=12, О- точка пересечения биссектрис из А и С.
Рассмотрим треугольник АОС. Угол ЕОС - внешний. По свойству внешнего угла сумма двух внутренних углов, не смежных с ним, равна 30°. Эти углы - половины углов при стороне АС треугольника АВС .Поэтому угол ВАС+ВСА=60°. Из суммы углов треугольника угол АВС=180°-60°=120°.
Одна из формул площади треугольника S=0,5•a•b•sinα, где а и b - стороны, α – угол между ними. S (ABC)=0,5•3√7•12•√3/2=9√21 (см²)
=========
Задача решена по данному в вопросе условию. Возможно, условие дано с ошибкой и одна из сторон не 3√7, а 7√3. Тогда площадь будет иной. Вычислите ее самостоятельно.
f(x)=4x2+6x+3f′(x)=8x+6f′(x0)=f′(1)=8∗1+6=14f(x)=1+x2xf′(x)=(1+x2)21∗(1+x2)−x∗2x=(1+x2)21+x2−2x2=(1+x2)21−x2f′(0)=(1+02)21−02=11=1f(x)=(3x2+1)(3x2−1)=(3x2)2−12=9x4−1f′(x)=9∗4x3=36x3f′(1)=36∗13=36
\begin{gathered}f(x)=2x*cosx \\ f'(x)=2*cosx+2x*(-sinx)=2cosx-2xsinx \\ f'( \frac{ \pi }{4})=2cos\frac{ \pi }{4}-2*\frac{ \pi }{4}*sin\frac{ \pi }{4}=2*\frac{\sqrt{2}}{2}-2* \frac{ \pi }{4}*\frac{\sqrt{2}}{2}= \sqrt{2}(1- \frac{\pi}{4}) \end{gathered}f(x)=2x∗cosxf′(x)=2∗cosx+2x∗(−sinx)=2cosx−2xsinxf′(4π)=2cos4π−2∗4π∗sin4π=2∗22−2∗4π∗22=2(1−4π)