Начнём с того, что cos 70 градусов число иррациональное и равно приблизительно 0.34 Из определения косинуса следует, что Cos 70 = AH/AB => AB = AH/cos 70 = приблизительно 56 см. Из треугольника ABH по теореме Пифагора находим BH => BH^2 = AB^2-AH^2= 53 см. Из подобия прямоугольных треугольников следует, что высота BH равна среднему геометрическому проекций катеров на гипотенузу, т.е BH = корень квадратный из AH * HC => HC = 147 см. Гипотенуза AC = AH+HC=166 см. Находим площадь данного треугольника: S= (53*166)/2=4400 см^2. Все величины являются приблизительными
Cos 70 = AH/AB => AB = AH/cos 70 =
приблизительно 56 см. Из треугольника ABH по теореме Пифагора находим BH => BH^2 =
AB^2-AH^2= 53 см. Из подобия прямоугольных треугольников следует, что высота BH равна среднему геометрическому проекций катеров на гипотенузу, т.е BH = корень квадратный из AH * HC => HC = 147 см. Гипотенуза AC =
AH+HC=166 см. Находим площадь данного треугольника: S= (53*166)/2=4400 см^2. Все величины являются приблизительными
Площадь прямоугольного треугольника равна 84 дм², а радиус окружности, вписанной в этот треугольник, 3см. Найти катеты треугольника.
Пусть дан треугольник АВС, угол С=90º
Точки касания вписанной окружности на АС- точка К, на ВС - точка Н, на гипотенузе АВ- точка М.
Пусть АК=х, ВН=у.
Тогда по свойству отрезков касательных из одной точки АМ=х, ВМ=у
АВ=х+у
АС=х+3, ВС=у+3
Формула радиуса вписанной окружности
r=S:p, где r -радиус, S - площадь треугольника. р- его полупериметр
р=х+у+3
3=84:(х+у+3)
х+у+3=28⇒
х+у=25
у=25-х
АВ=х+у=25 дм
АС=х+3
ВС=25-х+3=28-х
По т.Пифагора
(х+3)²+(28-х)²=625
Произведя вычисления и приведя подобные члены, получим квадратное уравнение
х²-25х+84=0
D=25²-4·84=289
Решив уравнение, найдем два корня: 21 и 4
АС=21+3=24 дм
ВС=28-21=7 дм
Кстати, длины сторон этого треугольника из Пифагоровых троек, где стороны относятся как 7:24:25