Пол комнаты, который имеет форму прямоугольника со сторонами 8,4 м и 3 м, необходимо покрыть паркетом прямоугольной формы. Длина дощечки паркета равна 20 см, а ширина — 5 см. Сколько потребуется таких дощечек для покрытия всего пола?
Смысл таких задач всегда одинаковый - надо найти, в какой пропорции точка К делит АР, а точка Р - сторону ВС. Оказывается, чтобы это определить, достаточно условий, что ВМ - медиана и К - её середина. Как будет видно дальше, в этой задаче достаточно найти КР/АК;
Пусть MN II BC, и точка N лежит на АР. Тогда треугольники MNK и BKP равны, так как ВК = КМ, и углы при этих сторонах равны. то есть NK = KP. При этом AN = NP, то есть КР = ВР/4, а AK = BP*3/4; и КР/АК = 1/3;
Этого уже достаточно, чтбы решить задачу. Дело в том, что отрезок СК делит треугольник АСР на два треугольника АКС и СКР, отношение площадей их равно 3 (у них высота общая - расстояние от С до АР, поэтому площади относятся, как АК/КР). При этом отрезок КМ делит треугольник АКС на два, равных по площади, так как М - середина ВС.
То есть если площадь СКР = s, то площадь АКС равна 3s, площади АКМ и КМС равны 3s/2, площадь КPСM равна s + 3s/2 = 5s/2;
и отношение площади KPCM к площади АМК = 5/3; задача решена.
Теперь пусть PQ II BC, Q лежит на ВМ. Тогда треугольник PQK подобен треугольнику ВМК. QK/KM = КР/АК = 1/3; QK = KM/3 = ВМ/6; QM = BM*(1/2 + 1/6) = BM*2/3; То есть BQ = BM/3, и, соответственно, ВР = ВС/3;
отсюда следует, что площади треугольников АРВ и АРС относятся, как 1/2. Это не имеет прямого отношения к задаче, но - если очень хочется - позволяет найти площади всех треугольников АВК, ВКР, АКМ и четырехугольника КРСМ по отношению к площади АВС. Можете сами попробовать :)
1)AB^2=AO^2+BO^2-2*AO*BO*cosAOB, получаем
AB^2=4+3-2*2*под корнем 3*под корнем3/2=7-2*3под корн.*3под корн.=7-6=1,
тогда получим что AB=1
S(OCH)=1/2AC*BD*sinAOB=1/2*4*3под корн.*1/2=2под корн.3, уточняю что угол AOB=30град., а угол BOC=150град., то получается что OE=1 высота пирамиды.
V=1/3S(OCH)*h=1/3*2под корн.3*1=2под3/3
V=2*3под корн./3.
3)
R= 7, L=10.Sос сеч=?, Sпов=?, V=?
Soc=1/2 * 14 * 10=70
Sпов=ПR(R+L)=П*7(7+10)=119П
4)
a=7, b=9. Sпов=?
Sпов=2*П*7*(7+9)=224П
7)
Ребро DA перпендикулярно к плоскости АВС , а плоскость DBC составляет с плоскостью АВС угол 30*.
Найдите площадь боковой поверхности пирамиды.
S(бок) = 2S(АДС) + S(ВСД)
Угол ДКА = 30, тогда АД = АК* tg30 = (aV3/2)*V3/3 =a/2
Тогда S(АСД) = 1/2*а*а/2 = а^2 / 4
ДК = а, тогда S(ВСД) = 1/2*а*а = а^2 / 2
S(бок) = 2*(а^2 / 4) * (а^2 / 2) = а^2.
Смысл таких задач всегда одинаковый - надо найти, в какой пропорции точка К делит АР, а точка Р - сторону ВС. Оказывается, чтобы это определить, достаточно условий, что ВМ - медиана и К - её середина. Как будет видно дальше, в этой задаче достаточно найти КР/АК;
Пусть MN II BC, и точка N лежит на АР. Тогда треугольники MNK и BKP равны, так как ВК = КМ, и углы при этих сторонах равны. то есть NK = KP. При этом AN = NP, то есть КР = ВР/4, а AK = BP*3/4; и КР/АК = 1/3;
Этого уже достаточно, чтбы решить задачу. Дело в том, что отрезок СК делит треугольник АСР на два треугольника АКС и СКР, отношение площадей их равно 3 (у них высота общая - расстояние от С до АР, поэтому площади относятся, как АК/КР). При этом отрезок КМ делит треугольник АКС на два, равных по площади, так как М - середина ВС.
То есть если площадь СКР = s, то площадь АКС равна 3s, площади АКМ и КМС равны 3s/2, площадь КPСM равна s + 3s/2 = 5s/2;
и отношение площади KPCM к площади АМК = 5/3; задача решена.
Теперь пусть PQ II BC, Q лежит на ВМ. Тогда треугольник PQK подобен треугольнику ВМК. QK/KM = КР/АК = 1/3; QK = KM/3 = ВМ/6; QM = BM*(1/2 + 1/6) = BM*2/3; То есть BQ = BM/3, и, соответственно, ВР = ВС/3;
отсюда следует, что площади треугольников АРВ и АРС относятся, как 1/2. Это не имеет прямого отношения к задаче, но - если очень хочется - позволяет найти площади всех треугольников АВК, ВКР, АКМ и четырехугольника КРСМ по отношению к площади АВС. Можете сами попробовать :)