Ромб АВСД, АВ=ВС=СД=АД=8, радиус=2*корень3, проводим перпендикуляры в точки касания ОН на АД и ОМ на АВ, ОН в квадрате=АН*НД - (это уравнение получается из отношения сторон подобных треугольников, треугольник АОН подобен треугольнику НОД как прямоугольные по равным острым углам - угол АОН=90-1/углаА=90-30=60, уголНДО)=1/2 углаД=(180-60)/2=60, тогда АН/ОН=ОН/НД или ОН в квадрате=АН*НД), НД=х, АН=8-х, 12=(8-х)*х, х в квадрате-8х+12=0, х=(8+-корень(64-4*12))/2=8+-4/2, х1=2=НД, х2=6=АН, АН=АМ-как касательные проведенные из одной точки=6, треугольник АМН равнобедренный, но уголА=60, а уголАМН=уголАНМ=(180-60)/2=60, треугольник равносторониий, МН=АН=АМ=6
СА – касательная к окружности. Вычислите градусную меру угла АВО, если ∠ВАС=58°.
[3]
2. Равнобедренный треугольник АВС (АВ=ВС) вписан в окружность с центром в точке О. Найдите величины дуг АС, АВ и ВС, если ∠АОС=70°. [4]
3. В окружности с центром в точке О проведен диаметр РМ=16,8 см и хорда АК, перпендикулярная РМ и равная радиусу данной окружности. Диаметр РМ и хорда АК пересекаются в точке Е.
a) выполните чертеж по условию задачи;
b) найдите радиус окружности; [4]
c) найдите длину отрезка АЕ;
d) вычислите периметр треугольника АОК.
4. В прямоугольном треугольнике СОК ( О = 90°) , СК= 18, СКО = 30° с центром в точке С проведена окружность. Каким должен быть ее радиус, чтобы:
а) окружность касалась прямой КО; [4]
b) окружность не имела общих точек с прямой КО;
c) окружность имела две общие точки с прямой КО?
5. Постройте треугольник АМР по сторонам АM=7 см, МK=6 см и углу ∠АМР = 45о. В полученном треугольнике постройте серединный перпендикуляр к стороне АР
СА – касательная к окружности. Вычислите градусную меру угла АВО, если ∠ВАС=58°.
[3]
2. Равнобедренный треугольник АВС (АВ=ВС) вписан в окружность с центром в точке О. Найдите величины дуг АС, АВ и ВС, если ∠АОС=70°. [4]
3. В окружности с центром в точке О проведен диаметр РМ=16,8 см и хорда АК, перпендикулярная РМ и равная радиусу данной окружности. Диаметр РМ и хорда АК пересекаются в точке Е.
a) выполните чертеж по условию задачи;
b) найдите радиус окружности; [4]
c) найдите длину отрезка АЕ;
d) вычислите периметр треугольника АОК.
4. В прямоугольном треугольнике СОК ( О = 90°) , СК= 18, СКО = 30° с центром в точке С проведена окружность. Каким должен быть ее радиус, чтобы:
а) окружность касалась прямой КО; [4]
b) окружность не имела общих точек с прямой КО;
c) окружность имела две общие точки с прямой КО?
5. Постройте треугольник АМР по сторонам АM=7 см, МK=6 см и углу ∠АМР = 45о. В полученном треугольнике постройте серединный перпендикуляр к стороне АР
Объяснение: