<A+<B=180°, значит АD параллельна ВС (так как <A и <B - внутренние односторонние при прямых AD и ВС и секущей АВ). АВ и CD параллельны (дано). Следовательно, четырехугольник АВСD - параллелограмм по признаку: "Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм." и ВС=AD, а АО=ОС, ВО=ОD по свойству диагоналей параллелограмма.. ВМ=КD (дано) и треугольники ВМО и ОDK равны по двум сторонам и углу между ними (ВМ=KD, ВО=ОD,<МBO=<ODК как накрест лежащие при параллельных ВС и AD и секущей ВD. Следовательно, МО=ОК (соответственные стороны равных треугольников), что и требовалось доказать.
Сечение куба проходит по двум параллельным ребрам оснований и двум диагоналям параллельных граней. Т.е. это прямоугольник АВС₁D₁. Так как грани куба - квадраты, их диагонали равны длине стороны квадрата, умноженной на √2. Обозначив длину ребра куба а, получим: d=ВС₁=АD₁=a√2 Тогда S☐= а*а√2=25√2 а=√25=5 см Диагональ куба находят по формуле D=а√3 Отсюда D=5√3. ----------------- Так как диагональ куба лежит в плоскости его диагонального сечения, она совпадает с диагональю сечения, которое дано в условии. Поэтому можно найти диагональ куба и как диагональ этого сечения по т. Пифагора с тем же результатом.
ВМ=КD (дано) и треугольники ВМО и ОDK равны по двум сторонам и углу между ними (ВМ=KD, ВО=ОD,<МBO=<ODК как накрест лежащие при параллельных ВС и AD и секущей ВD.
Следовательно, МО=ОК (соответственные стороны равных треугольников), что и требовалось доказать.
Так как грани куба - квадраты, их диагонали равны длине стороны квадрата, умноженной на √2.
Обозначив длину ребра куба а, получим:
d=ВС₁=АD₁=a√2
Тогда
S☐= а*а√2=25√2
а=√25=5 см
Диагональ куба находят по формуле
D=а√3
Отсюда D=5√3.
-----------------
Так как диагональ куба лежит в плоскости его диагонального сечения, она совпадает с диагональю сечения, которое дано в условии.
Поэтому можно найти диагональ куба и как диагональ этого сечения по т. Пифагора с тем же результатом.