Пользовавшись рис. 186 выполните задания 1-4:
1) Укажите прямую, которая симметрична прямой ВС относительно оси абсцисс.
2) Укажите треугольник, который относительно т. О симметричный треугольнику АКО.
3) Укажите точку, к которой при повороте вокруг т. О на 90 градусов против часовой стрелки переходит т. К.
4) При параллельном переносе т. D переходит в т. К. Укажите точку, в которую при этом переходит т
Объяснение:
B1
Тр-к КMN
Тр-к HLS
B2
<ABC=180-<ABD=180-62=118
<BAC=180-<ABC-<ACB=180-118-40=22
Меньшей стороной тр-ка АВС является сторона лежащая против меньшего угла,
Угол ВАС меньший, значит ВС меньшая сторона
В3
Внешний угол треугольника равен сумме двух оставшихся внутренних углов не смежных с этим внешним углом :
<1+65=127
<1=127-65
<1=62
В4
Если угол при основании равен 70,то угол между боковыми сторонами равен
180-2×70=180-140=40
два других угла равны: 70 ; 40
Если угол между боковыми сторонами равен
70,то углы при основании равны:
(180-70)/2=110/2=55
два других угла равны : 55 ; 55
В5
<АВС=180-<АВЕ=180-104=76
<АВС=<АСВ=76
Тр-к АВС - равнобедренный
Тогда АВ=АС=12 см
В6
Тр-к АВС равносторонний :
<А=<В=<С=60
Углы тр-ка АОВ равны :
<ВА0=<А:2=60:2=30
<АВО=<В:2=60:2=30
<ВОА=180-<ВАО×2=180-30×2=120
В7
Тр-кАВС равнобедренный
ВD медиана и биссектриса
<В=30×2=60
<С=<А=(180-60)/2=120/2=60
Медиана, проведённая к большему катету, равна 5√13 ≈ 18,03; гипотенуза делится точкой касания с вписанной окружностью на отрезки длиной 15 и 10.
(см. рисунок - в прикреплении)
Объяснение:
1) Медиана АМ, проведённая к большему катету ВС, делит его на 2 равных отрезка СМ = МВ = 10, и, таким образом, является гипотенузой в прямоугольном треугольнике МСА с катетами МС = 10 и АС = 15. Согласно теореме Пифагора, гипотенуза АМ равна корню квадратному из суммы квадратов катетов:
АМ = √(МС² + АС²) = √(10² + 15²) = √(100 + 225) = √325 = √(25 · 13) = 5√13 ≈ 5 · 3,6056 ≈ 18,03
2) Радиус r окружности, вписанной в прямоугольный треугольник, рассчитывается по формуле:
r = (a + b - c) : 2,
где а и b - катеты прямоугольного треугольника, с - его гипотенуза.
Гипотенуза АВ прямоугольного Δ АВС равна:
АВ = √(АС² + ВС²) = √(15²+20²) = √(225 + 400) = √625 = 25
Таким образом, радиус окружности, вписанной в Δ АВС, равен:
r = (АС + ВС - АВ) : 2 = (15 + 20 - 25) : 2 = (35 - 25) : 2 = 10 : 2 = 5
3) Вписанная окружность касается катета АС в точке D, а гипотенузы АВ в точке Е. Так как CD = r = 5, то АD = АС - СD = 15 - 5 = 10.
Отрезки касательных, проведённых к окружности из одной точки, равны.
Следовательно, AD = AE = 10
4) ВЕ = АВ - АЕ = 25 - 10 = 15
Таким образом, гипотенуза АВ делится точкой касания Е с вписанной окружностью на отрезки ВЕ длиной 15 и АЕ длиной 10.
ответ: медиана, проведённая к большему катету, равна 5√13 ≈ 18,03; гипотенуза делится точкой касания с вписанной окружностью на отрезки длиной 15 и 10.