Из вершины к основанию проведём высоту, равную 15, т.к. Трапеция прямоугольная, и высота будет равна боковой стороне, образующей прямой угол. Получили прямоугольный треугольник, у которого гипотенуза равна 17, а больший катет 15. По теореме Пифагора найдём меньший катет. 17*17=15*15 + х 289=225+X X=64 Меньший катет равен восьми. Т.к. Высота образует собой прямоугольник и треугольник, то следовательно, что меньший катет будет равен меньшему основанию трапеции. (Обязательно сделай чертёж, чтобы точно все понимать), из этого следует, что меньшее основание равно восьми, а большее - 16. S= (A+B) / 2 * H S= (16+8) / 2 * 15 S = 12*15 = 180 ответ: S трапеции = 180
Так как A внутри BCD, AB=AD, то BAD - тоже равнобедренный треугольник, и у него общее с BCD основание BD. Поставим точку K так, что BK=KD, тогда KC - медиана BCD, KA - медиана BAD. Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC. Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.
Из вершины к основанию проведём высоту, равную 15, т.к. Трапеция прямоугольная, и высота будет равна боковой стороне, образующей прямой угол. Получили прямоугольный треугольник, у которого гипотенуза равна 17, а больший катет 15. По теореме Пифагора найдём меньший катет. 17*17=15*15 + х 289=225+X X=64 Меньший катет равен восьми. Т.к. Высота образует собой прямоугольник и треугольник, то следовательно, что меньший катет будет равен меньшему основанию трапеции. (Обязательно сделай чертёж, чтобы точно все понимать), из этого следует, что меньшее основание равно восьми, а большее - 16. S= (A+B) / 2 * H S= (16+8) / 2 * 15 S = 12*15 = 180 ответ: S трапеции = 180
Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC.
Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.