Определение параллелограмма – 4-к, у которого стороны попарно параллельны.По свойству пар.гр. противолежащие углы равны. Значит угол, противолежащий данному равен 50°. Сумма углов любого четырёхугольника равна 360°. Значит сумма двух оставшихся углов равна 360°-50°-50°=260°. По тому же свойству о противолежащих углах оставшиеся два равны 130° каждый.Ещё одно свойство пар.гр. – противолежащие стороны равны. Периметр – сумма всех четырёх сторон т.е. 2×(a+b), где a и b – две НЕпротиволежащие стороны. Пусть а – та сторона, что в 6 раз меньше b. Таким образом 126 = 2×(а + 6а) <=> 7а = 63 <=> а = 9 см. b = 6a <=> b = 54 см.
Объяснение:
Определение параллелограмма – 4-к, у которого стороны попарно параллельны.По свойству пар.гр. противолежащие углы равны. Значит угол, противолежащий данному равен 50°. Сумма углов любого четырёхугольника равна 360°. Значит сумма двух оставшихся углов равна 360°-50°-50°=260°. По тому же свойству о противолежащих углах оставшиеся два равны 130° каждый.Ещё одно свойство пар.гр. – противолежащие стороны равны. Периметр – сумма всех четырёх сторон т.е. 2×(a+b), где a и b – две НЕпротиволежащие стороны. Пусть а – та сторона, что в 6 раз меньше b. Таким образом 126 = 2×(а + 6а) <=> 7а = 63 <=> а = 9 см. b = 6a <=> b = 54 см.a) 84*, 84*, 96*, 96*.
б) 62,5*, 62,5*, 117,5*, 117,5*.
в) 71*, 71*, 109*, 109*.
Объяснение
Известно, что в параллелограмме противоположные углы и стороны равны.
a) Значит ∠А=∠С=84* и ∠В=∠D= (360*-2*84)/2=96*
б) ∠A-∠B=55*. Следовательно ∠A=∠B+55*.
Обозначим угол В через х, тогда угол А=х+55
Сумма углов в четырехугольнике равна 360*. Составим уравнение:
(х+х+55)*2=360;
4x+110=360;
4x=250;
x=62,5 - угол В;
Угол А=62,5+55=117,5*
в) Поправка: так как ∠А=∠С, то их разность не может быть 142*. Думаю, здесь закралась ошибка и "не минус", а "плюс". Тогда решаемо:
∠А+∠С=142* и ∠А=∠С=142/2=71*;
∠В=∠D=(360-142)/2=109*.