Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
Расстояние от точки Т до прямой RC равно 3.
Объяснение:
∆RTC- прямоугольный равнобедренный треугольник.
<RTC=90°, так как опирается на диаметр RC.
<RCT=45°, по условию.
В прямоугольном треугольнике сумма острых углов равна 90°
<ТRC=90°-<RCT=90°-45°=45°
Углы при основании равны треугольник равнобедренный.
RT=TC=3√2.
По теореме Пифагора найдем гипотенузу
RC=√(RT²+TC²)=√((3√2)²+(3√2)²)=√(18+18)=
=√36=6
Так как ∆RTC- равнобедренный, то ТО- высота, медиана и биссектрисса.
Медиана равна половине гипотенузы.
ТО=1/2*RC=1/2*6=3.