Через подобие треугольников образованных биссектрисами находим соотношение сторон четырехугольника, который одновременно является прямоугольником. Соответственно большая сторона к большей биссектрисе, и меньшая к меньшей биссектрисе, т.е. 1/7 и 1/5.
Находим биссектрисы:
Малая биссектриса B1=5*2*sin a/2.
Большая биссектриса B2=7*2*cos a/2.
Малая сторона А1=2*sin a/2.
Большая сторона А2=2*cos a/2
Площадь прямоугольника Sпр=2*sin a/2.* 2*cos a/2=4*sin a/2.*cos a/2
Соотношение: Sпар/ Sпр=35*sin a/(4*sin a/2.*cos a/2) используя формулу sin 2α = 2sinα cosα
Дано: AB =BC; BH ⊥ AC ; AK =KB ; L∈ окружности (B,C , K ).
док. ΔAKL равнобедренный
Окружность проходит через три точки K ,B и C (описанная около треугольника KBC) ее центр это точка пересечения средних перпендикуляров KB и BС . AB =BC ⇒∠ABH =∠CBH (высота BH одновременно и биссектриса ; свойство равнобедренного треугольника ) . ∠KBL =∠CBL , L∈ BH * * *∠KBL=∠ABH ,∠CBL=∠CBH * * * (дугаKL)/2 = (дугаCL)/2 ⇒ KL =CL( равные дуги _равные хорда) , но CL =AL , следовательно KL =AL т.е. треугольник AKL равнобедренный .
Площадь параллелограмма Sпар=7*5*sin a=35*sin a
Через подобие треугольников образованных биссектрисами находим соотношение сторон четырехугольника, который одновременно является прямоугольником. Соответственно большая сторона к большей биссектрисе, и меньшая к меньшей биссектрисе, т.е. 1/7 и 1/5.
Находим биссектрисы:
Малая биссектриса B1=5*2*sin a/2.
Большая биссектриса B2=7*2*cos a/2.
Малая сторона А1=2*sin a/2.
Большая сторона А2=2*cos a/2
Площадь прямоугольника Sпр=2*sin a/2.* 2*cos a/2=4*sin a/2.*cos a/2
Соотношение: Sпар/ Sпр=35*sin a/(4*sin a/2.*cos a/2) используя формулу sin 2α = 2sinα cosα
Получаем:
Sпар/ Sпр=35*sin a/(4*sin a/2.*cos a/2)=35*2*(sin a/2.*cos a/2)/(4*sin a/2.*cos a/2)=35/2
ОТВЕТ: Sпар/ Sпр=35/2
док. ΔAKL равнобедренный
Окружность проходит через три точки K ,B и C (описанная около треугольника KBC) ее центр это точка пересечения средних перпендикуляров KB и BС .
AB =BC ⇒∠ABH =∠CBH (высота BH одновременно и биссектриса ; свойство равнобедренного треугольника ) .
∠KBL =∠CBL , L∈ BH * * *∠KBL=∠ABH ,∠CBL=∠CBH * * *
(дугаKL)/2 = (дугаCL)/2 ⇒ KL =CL( равные дуги _равные хорда) , но CL =AL , следовательно KL =AL т.е. треугольник AKL равнобедренный .