поместите несколько кристалликов марганцовки в воду . опишите наблюдаемые явления.К каким явлениям относится процесс растворения этого вещества в воде?
Биссектриса прямого угла прямоугольного треугольника делит гипотенузу на отрезки длиной 3 см и 4 см. Найдите радиус окружности, вписанной в треугольник.
решение : Радиус окружности, вписанной в прямоугольный треугольник вычисляется по формуле r = ( a + b - c)/2 ,где a и b катеты , c -гипотенуза .
a / b = 3/4 (свойство биссектрисы внутреннего угла треугольника)
* * *Биссектриса угла, проведённая в треугольнике, делит противолежащую сторону на два отрезка, которые пропорциональны прилежащим к углу сторонам * * * .
a =3k ; b =4k ⇒ с =5k * * * c =√( (3k)²+(4k)² ) =5k * * *
r =(3k+4K -5k)/2 = k , но c =3 см+4 см =7 см ; 5k =7 см⇒ k =1,4 см.
Биссектриса прямого угла прямоугольного треугольника делит гипотенузу на отрезки длиной 3 см и 4 см. Найдите радиус окружности, вписанной в треугольник.
решение : Радиус окружности, вписанной в прямоугольный треугольник вычисляется по формуле r = ( a + b - c)/2 ,где a и b катеты , c -гипотенуза .
a / b = 3/4 (свойство биссектрисы внутреннего угла треугольника)
* * *Биссектриса угла, проведённая в треугольнике, делит противолежащую сторону на два отрезка, которые пропорциональны прилежащим к углу сторонам * * * .
a =3k ; b =4k ⇒ с =5k * * * c =√( (3k)²+(4k)² ) =5k * * *
r =(3k+4K -5k)/2 = k , но c =3 см+4 см =7 см ; 5k =7 см⇒ k =1,4 см.
ответ : 1,4 см .
Дано: АМ и ВМ - наклонные.
ВМ : АВ = 1 : 2
АС = 7 см
ВС = 1 см
Найти: АМ и ВМ
Пусть ВМ у нас Х см, тогда АМ по условию 2Х см
Т.к. по условию АС и ВС - проекции АМ и ВМ, то МС⊥ плоскости а по определению.
Мы получили два прямоугольных треугольника АМС и ВМС, где наклонные - гипотенузы, а МС - общий катет, который можно найти по теореме Пифагора.
Из Δ АМС катет МС = (2Х)² - АС²
Из Δ ВМС катет МС = Х² - ВС²
Приравняем выражения для одного и того же катета:
4Х² - АС² = Х² - ВС²
3Х² = АС² - ВС²
Подставим значения проекций и решим уравнение относительно Х
3Х² = 7² - 1²
3Х² = 49 - 1
Х² = 48 : 3
Х² = 16
Х = 4 (см) --- это сторона ВМ
2Х = 4*2 = 8 (см) это сторона АВ
ответ: ВМ = 8 см; АМ = 4 см
Дано: АМ і ВМ - похилі.
ВМ : АВ = 1 : 2
АС = 7 см
ВС = 1 см
Знайти: АМ і ВМ
Рішення:
Нехай ВМ у нас Х см, тоді АМ за умовою 2Х см
Оскільки за умовою АС і ВС - проекції АМ і ВМ, то МС⊥ площині а за визначенням.
Ми отримали два прямокутних трикутника АМС і ВМС, де похилі - гіпотенузи, а МС - спільний катет, який можна знайти за теоремою Піфагора.
З Δ АМС катет МС² = (2Х)² - АС²
З Δ ВМС катет МС² = Х² - ВС²
Приравняем вирази для одного і того ж катета:
4Х² - АС² = Х² - ВС²
3Х² = АС² - ВС²
Підставимо значення проекцій і вирішимо рівняння відносно Х
3Х² = 7² - 1²
3Х² = 49 - 1
Х² = 48 : 3
Х² = 16
Х = 4 (см) --- це сторона ВМ
2Х = 4*2 = 8 (см) це сторона АВ
Відповідь: ВМ = 8 см; АМ = 4 см