Проекция секущей плоскости на основание цилиндра-это хорда АВ в круге радиусом R=17. Проведём из центра круга О радиусы к хорде ОА и ОВ. В равнобедренном треугольнике ОАВ проведём высоту ОК=15 на АВ. Найдём КВ=корень из(ОВ квадрат-ОК квадрат)= корень из(289-225)=8. Отсюда АВ=2 КВ=16-это основание получившегося сечения. Диагональ этого сечения-гипотенуза. По теореме Пифагора высота цилиндра H=корень из(D квадрат-АВ квадрат)=корень из(400-256)=12. Где D=20- диагональ. Тогда объём V=пи*R квадрат*H= пи*289*12=3468 пи.
Периметр ромба равен 8 м.
Объяснение:
В ромбе диагонали взаимно перпендикулярны и являются биссектрисами углов. Следовательно ∠KEL = ∠EKL.
∠EOA = ∠EKL (дано). =>
∠KEL = ∠EAO => треугольник EOA равнобедренный.
Кроме того, АВ║LK║EF (так ∠EOA = ∠EKL соответствкнные углы при АВ и LK и секущей ЕК).
Значит ЕА = АО =1м.
АО = ОВ (так как точка О - точка пересечения диагоналей ромба).
AEFB - параллелограмм (так как АВ║EF и EA║FB). =>
EF =AB = 2·AO = 2 м.
Итак, сторона ромба равна 2м, тогда его периметр равен 8м (стороны ромба равны).
Проекция секущей плоскости на основание цилиндра-это хорда АВ в круге радиусом R=17. Проведём из центра круга О радиусы к хорде ОА и ОВ. В равнобедренном треугольнике ОАВ проведём высоту ОК=15 на АВ. Найдём КВ=корень из(ОВ квадрат-ОК квадрат)= корень из(289-225)=8. Отсюда АВ=2 КВ=16-это основание получившегося сечения. Диагональ этого сечения-гипотенуза. По теореме Пифагора высота цилиндра H=корень из(D квадрат-АВ квадрат)=корень из(400-256)=12. Где D=20- диагональ. Тогда объём V=пи*R квадрат*H= пи*289*12=3468 пи.