ПОМТГИТЕ ТУТ НАДО ВСТАВИТЬ СЛОВА НА ПРОПУСКИ следует из___признака
равенства треугольников
(2) следует из___ признака
равенства треугольников
(3) и (4) следуют из теоремы
о__углов треугольника
и __признака равенства
треугольников
(5) чтобы доказать равенство
прямоугольных треугольников
по__ и катету
ответ:8 корней из 105
Объяснение:
Сначала фотка с рисунком, потом с ручкой, потом с большим решением, а потом желтая фотка
2) На фото сумбурно, но попробую объяснить.
Объем равен произведению высоты на площадь (в нашем случае -- это правильный треугольник, поэтому я сразу поставила его формулу)
Дальше из прямоугольного треугольника составляю систему: теорема Пифагора и косинус (косинус-- это отношение прилягаемого катета к гипотенузе)
Из второго узнаем, что с=3а
3)На следующем фото у меня формула Герона, по которой можно найти площадь треугольника А1ВС. Но нам она известна, поэтому, подставив вместо с 3а, мы находим сторону а, из которой потом легко вывели с
4)Далее по теореме Пифагора, которую мы написали ранее, находим высоту. Теперь нам известно всё, чтобы узнать объем. Подставляем и готово
Объяснение:
ответ: угол VDE=углу D=105°; 2 угла смежные с ним по 75°
Объяснение: угол А=130°, так как при пересечении прямых углы между ними равны. На прямой LC угол А° смежный с другитм внутренним углом, и зная, что сумма смежных углов составляет 180°, то угол САЕ=180-130=50°. Теперь найдём угол VBC, он смежный с углом 50° на прямой VD, значит угол VBC=180-50=130°. На прямой ЕС угол 75° смежный с углом смежный с другим углом АЕС. Угол АЕС=180-75=105°. Внутренний угол Е тоже будет 105°. Нам известны 3 угла четырёхугольника, найдём 4-й VDE. Зная, что сумма углов четырёхугольника составляет 360°, то Угол VDE=360-50-130-105=75°. Угол VDE=углу D=75°. Смежный угол с углом D=180-75=105° и он равен противоположному углу при пересечении прямых.