Проведём высоту к основанию ,которая одновременно является и медианой.Из образованного ею прямоугольного треугольника с гипотенузой =10 см и катетом равным половине основания равнобедренного треугольника 12:2=6 см, найдем второй катет.
По теореме Пифагора h=√a²-1/2c²=√10²-6²=√100-36=√64=8 см
SΔ=1/2c*h=1/2*12*8=48 см²
2.
Медиана делит гипотенузу напополам,а середина гипотенузы является центром описанной окружности .Гипотенуза является её диаметром,а медиана треугольника, проведенного из прямого угла,является её радиусом. d=2r r=d/2,значит медиана равна половине гипотенузы.
Обозначим вершины углов трапеции АВСD. Трапеция равнобедренная, следовательно, имеет два угла по 60 градусов, и это - углы при основании АD.
Опустим из В высоту на АD. Высота равнобедренной трапеции, опущенная из тупого угла, делит большее основание на отрезки, из которых один - полуразность оснований, другой - полусумма. АН=(12-6):2=3 см АВ=АН:cos(60)=3:0,5=6 см
Проведя из С параллельно АВ прямую СЕ, получим треугольник с равными углами при ЕD, т.к. углы ВАЕ и СЕD равны как соответственные при параллельных прямых АВ и СЕ и секущей АD. Отсюда треугольник ЕСD - равнобедренный и равносторонний. АЕ=ВС=12-6=6 см ЕD=12-6=6 см В равностороннем треугольнике все стороны равны. Боковые стороны данной трапеции равны 6 см
Объяснение:
1.
дано:а=в=10 см,с=12см -основание
найти: SΔ?
Проведём высоту к основанию ,которая одновременно является и медианой.Из образованного ею прямоугольного треугольника с гипотенузой =10 см и катетом равным половине основания равнобедренного треугольника 12:2=6 см, найдем второй катет.
По теореме Пифагора h=√a²-1/2c²=√10²-6²=√100-36=√64=8 см
SΔ=1/2c*h=1/2*12*8=48 см²
2.
Медиана делит гипотенузу напополам,а середина гипотенузы является центром описанной окружности .Гипотенуза является её диаметром,а медиана треугольника, проведенного из прямого угла,является её радиусом. d=2r r=d/2,значит медиана равна половине гипотенузы.
Трапеция равнобедренная, следовательно, имеет два угла по 60 градусов, и это - углы при основании АD.
Опустим из В высоту на АD.
Высота равнобедренной трапеции, опущенная из тупого угла, делит большее основание на отрезки, из которых один - полуразность оснований, другой - полусумма.
АН=(12-6):2=3 см
АВ=АН:cos(60)=3:0,5=6 см
Проведя из С параллельно АВ прямую СЕ, получим треугольник с равными углами при ЕD, т.к. углы ВАЕ и СЕD равны как соответственные при параллельных прямых АВ и СЕ и секущей АD. Отсюда треугольник ЕСD - равнобедренный и равносторонний. АЕ=ВС=12-6=6 см
ЕD=12-6=6 см
В равностороннем треугольнике все стороны равны. Боковые стороны данной трапеции равны 6 см