Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельные прямые. Следовательно нам надо найти в плоскости ADB прямую параллельную DB и проходящую через точку E.
Следовательно это будет прямая содержащая отрезок EF - среднюю линию ΔADB.
Повторив эти рассуждения для плоскостей ABC и ADC, получим, что сечением будет ΔEFG образованный средними линиями EF, FG и GE треугольников ADB, ADC и ABC соответственно.
В каждом из треугольников мы знаем сторону основания, соответственно можем найти средние линии:
EF = FG = 7.5
FG = 9
Найдем площадь треугольника EFG, найдя высоту FH проведенную к основанию EG равнобедренного трегольника EFG
Теперь найдем и площадь сечения по формуле полупроизведения высоты на основание:
а) АА1 = 27 см. б) Saoв1 = 50 см². в) Sabc = 594 cм².
г) Sвoc1 = 155 5/17 ≈ 155,3 cм².
Объяснение:
Дано: СВ1: СА = 6 : 11, СА1: А1В = 1 : 2. =>
В1А/АС = 5/11. BC/CA1 = 3/1. АС/АВ1 = 11/5. АB1/СВ1 = 5/6.
а) По Менелаю в треугольнике САА1 и секущей В1ВВ:
(СВ1/В1А)·(АО/ОА1)·(А1В/ВС) = 1. Или
(6/5)·(15/ОА1)·(2/3) = 1. =>ОА1 = 12. АА1 = АО+ОА1.
Тогда АА1 = 15+12 = 27 см.
в) Треугольники АВС и АА1С имеют общую высоту АН, поэтому их площади относятся как Sabc/Saa1c = BC/CA1 = 3/1.
Sabc = 3*Saa1c = 594 cм².
б) По Менелаю для треугольника СВВ1 и секущей АА1 имеем:
(СА1/А1В)*(ВО/ОВ1)*(В1А/АС) = 1. Подставим известные значения:
(1/2)*(ВО/ОВ1)*(5/11) = 1 => ВО/ОВ1 = 22/5.
Треугольники АВС и АВВ1 имеют общую высоту ВР, поэтому их площади относятся как Sabc/Saвв1 = АС/АВ1 = 11/5.
Sabb1 = (5/11)*Sabc = (5/11)*594 = 270cм².
Треугольники АВB1 и АOВ1 имеют общую высоту AL, поэтому их площади относятся как Sabb1/Saoв1 = BB1/OВ1 = 27/5. Тогда
Saoв1 = Sabb1*(5/27) = 270*5/27 = 50 см².
г) Sсbb1 = (6/11)·Sabc = (6/11)·594 = 324 cм².
Sabb1 = (5/11)·594 = 270 cм².
Sabo = Sabb1 - Saob1 = 270-50 = 220 cм².
По Менелаю в треугольнике ABВ1 и секущей C1C:
(AC1/C1В)·(ВО/ОВ1)·(В1C/CА) = 1. Или
(AC1/C1В)·(22/5)·(6/11) = 1. => AC1/C1В = 5/12.
Треугольники AOB и BOС1 имеют общую высоту OK, поэтому их площади относятся как Sboc1/Sabo = BC1/AВ = 12/17. Тогда
Sвoc1 = Saob·(12/17) = 220(12/17) = 155 5/17 ≈ 155,3 cм².
Или так: BB1/OВ = 27/22. (Найдено в п. б).
Scbo =Scbb1·BO/BB1 = 324·22/27 =264 cм².
Треугольники СВO и BOC1 имеют общую высоту BM, поэтому их площади относятся как Sсbo/Sboc1 = CO/OC1. Sboc1 = Sсbo·OC1/CO.
Найдем отношение OC1/CO.
По Менелаю в треугольнике ABВ1 и секущей C1C:
(AC1/C1В)·(ВО/ОВ1)·(В1C/CА) = 1. Или
(AC1/C1В)·(22/5)·(6/11) = 1. => AC1/C1В = 5/12.
По Менелаю в треугольнике AСС1 и секущей В1В:
(АВ1/В1С)·(СО/ОС1)·(С1В/ВА) = 1. Или
(5/6)·(СО/ОС1)·(12/17) = 1. => СО/ОС1 = 17/10. Тогда
Sсbo/Sboc1 = 17/10. =>
Sboc1 = Sсbo·10/17 = 264·10/17 = 155 5/17 ≈ 155,3 cм².
Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельные прямые. Следовательно нам надо найти в плоскости ADB прямую параллельную DB и проходящую через точку E.
Следовательно это будет прямая содержащая отрезок EF - среднюю линию ΔADB.
Повторив эти рассуждения для плоскостей ABC и ADC, получим, что сечением будет ΔEFG образованный средними линиями EF, FG и GE треугольников ADB, ADC и ABC соответственно.
В каждом из треугольников мы знаем сторону основания, соответственно можем найти средние линии:
EF = FG = 7.5
FG = 9
Найдем площадь треугольника EFG, найдя высоту FH проведенную к основанию EG равнобедренного трегольника EFG
Теперь найдем и площадь сечения по формуле полупроизведения высоты на основание:
S = 6 * 9 / 2 = 27