В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
24√3 ед²
Объяснение:
Правильный шестиугольник.
Диагонали правильного шестиугольника образуют 6 равносторонних треугольников.
Рассмотрим треугольник ∆ОКL
KM- высота, биссектрисса и медиана треугольника ∆ОКL.
По формуле нахождения высоты равностороннего треугольника
KM=KL√3/2 ед
KM=8√3/2=4√3 ед
Так как ВL=KB, по условию
Применяем теорему Фалеса
КТ=ТМ
ТМ=КМ/2=4√3:2=2√3 ед
Рассмотрим треугольник ∆ОLC
CM- высота, биссектрисса и медиана треугольника ∆ОLC.
Поскольку ∆ОLC=∆OKL, то и высоты их равны КМ=МС=4√3 ед
ТС=ТМ+КМ=2√3+4√3=6√3 ед
ТС- высота ∆АВС опущенная на сторону АС.
S(∆ABC)=1/2*AC*TC=1/2*8*6√3=24√3 ед²
P.S. поскольку еденицы измерения не указаны, то написала ед.- едениц.
По т.Пифагора АВ²=АС²+ВС²
АВ²-АС²=ВС²
Примем АС=а. Тогда гипотенуза АВ=а√2.
2а²-а²=36⇒
а=√36=6
a√2=6√2
АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой.
В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла).
СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.