Прощадь ромба S = a^2*sin(α) Площадь каждой из трёх равновеликих фигур S = a^2*sin(α)/3 Две фигуры - это треугольники АВЕ и AFD, третья - четырёхугольник AECF Четырёхугольник AECF в свою очередь состоит из двух равных треугольников AEC и ACF Значит площадь треугольника ABE в два раза больше площади треугольника AEC AH - высота для треугольника ABE и треугольника AEC АН = АB*sin(HBA) = AB*sin(BAD) = a*sin(α) Т.к. высота для треугольника ABE и треугольника AEC общая, то их площади относятся как основания треугольников и ВЕ = 2EC = 2/3a По теореме косинусов AE^2 = AB^2 + BE^2 - 2*AB*BE*cos(π-α) = a^2 + 4/9*a^2 + 2*a*2/3*a*cos(α) = 13/9*a^2 + 4/3*a^2*cos(α) = a^2*(13/9 + 4/3*cos(α)) AE = a*(13/9 + 4/3*cos(α))^(1/2)
Центр вписанной в треугольник окружности находится в точке пересечении биссектрис треугольника. Центр описанной окружности находится в точке пересечения срединных перпендикуляров к сторонам треугольника. Любая точка на биссектрисе равноудалена от сторон угла, в котором она проведена. Точка пересечения биссектрис углов треугольника равноудалена от всех трех его сторон. Биссектриса равностороннего треугольника является и его высотой и медианой. Так как медианы любого треугольника делятся точкой пересечения в отношении 2:1, а высоты равностороннего треугольника являются срединными перпендикулярами к его сторонам, радиус описанной окружности равен расстоянию от точки пересечения высот до вершин треугольника и равен, 2/3 высоты, а вписанной - расстоянию от точки пересечения биссектрис до сторон треугольника и равен 1/3 высоты правильного треугольника. Радиус вписанной в данный треугольник окружности равен 3:3= 1см. Радиус описанной вокруг данного треугольника окружности равен (3:3)*2 см Радиус вписанной окружности в равносторонний треугольник равен одной трети высоты, а радиус описанной - двум третям. Значит, радиус вписанной 1 см, описанной - 2 см. ----------------------------------- Для решения задачи чертеж не нужен. Но раз учитель требует, даю и чертеж и подробное решение.
S = a^2*sin(α)
Площадь каждой из трёх равновеликих фигур
S = a^2*sin(α)/3
Две фигуры - это треугольники АВЕ и AFD, третья - четырёхугольник AECF
Четырёхугольник AECF в свою очередь состоит из двух равных треугольников AEC и ACF
Значит площадь треугольника ABE в два раза больше площади треугольника AEC
AH - высота для треугольника ABE и треугольника AEC
АН = АB*sin(HBA) = AB*sin(BAD) = a*sin(α)
Т.к. высота для треугольника ABE и треугольника AEC общая, то их площади относятся как основания треугольников
и ВЕ = 2EC = 2/3a
По теореме косинусов
AE^2 = AB^2 + BE^2 - 2*AB*BE*cos(π-α) = a^2 + 4/9*a^2 + 2*a*2/3*a*cos(α) = 13/9*a^2 + 4/3*a^2*cos(α) = a^2*(13/9 + 4/3*cos(α))
AE = a*(13/9 + 4/3*cos(α))^(1/2)
Центр описанной окружности находится в точке пересечения срединных перпендикуляров к сторонам треугольника.
Любая точка на биссектрисе равноудалена от сторон угла, в котором она проведена. Точка пересечения биссектрис углов треугольника равноудалена от всех трех его сторон. Биссектриса равностороннего треугольника является и его высотой и медианой.
Так как медианы любого треугольника делятся точкой пересечения в отношении 2:1,
а высоты равностороннего треугольника являются срединными перпендикулярами к его сторонам,
радиус описанной окружности равен расстоянию от точки пересечения высот до вершин треугольника и равен, 2/3 высоты,
а вписанной - расстоянию от точки пересечения биссектрис до сторон треугольника и равен 1/3 высоты правильного треугольника.
Радиус вписанной в данный треугольник окружности равен 3:3= 1см.
Радиус описанной вокруг данного треугольника окружности равен (3:3)*2 см Радиус вписанной окружности в равносторонний треугольник равен одной трети высоты, а радиус описанной - двум третям. Значит, радиус вписанной 1 см, описанной - 2 см.
-----------------------------------
Для решения задачи чертеж не нужен. Но раз учитель требует, даю и чертеж и подробное решение.