Решение данной задачи основано на теореме об угле, образованного пересекающимися хордами. Такой угол равен половине суммы дуг, заключенных между его сторонами. Рисуем окружность. Произвольно чертим хорды с учетом на то, что отношение двух дуг = 1:3. Тогда составляем уравнение 60 градусов = (1х+3х)/2 где 1 и 3 - заданные условием задачи части; х - градусная мера 1 части. Отсюда х= 60*2/4 = 30 градусов - это градусная мера меньшей дуги АС 30 градусов *3 = 90 градусов - это градусная мера большей дуги ДВ Проверяем правильность решения: На дугу в 30 градусов опирается вписанный угол В, который равен = 1/2 дуги АС равной 30 => угол В = 15 На дугу в 90 градусов опирается угол В = 1/2 дуги ДВ равную 90 => угол Д = 45 Следовательно сумма углов треугольника АОВ = 45+15+120 =180, где О центр пересечения хорд Задача решена ответ: градусная мера дуг, заключенных между сторонами угла 60 градусов равна 30 и 90 градусам.
Пусть исходный треугольник будет АВС, а пересекают его прямые КМ и ТР, параллельные АС. КМ ║ТР║ АС⇒ соответственные углы, образованные при их пересечении секущей АВ, равны, а угол В для всех трех треугольников общий. ∆ АВС ~ ∆ТВР~∆ КВМ по двум углам, прилежащим к одной стороне. АВ=3 части, ТВ=2 части. КР=1 часть. Отношение площадей подобных фигур равно квадрату коэффициента их подобия.
Рисуем окружность. Произвольно чертим хорды с учетом на то, что отношение двух дуг = 1:3. Тогда составляем уравнение
60 градусов = (1х+3х)/2
где 1 и 3 - заданные условием задачи части; х - градусная мера 1 части.
Отсюда
х= 60*2/4 = 30 градусов - это градусная мера меньшей дуги АС
30 градусов *3 = 90 градусов - это градусная мера большей дуги ДВ
Проверяем правильность решения:
На дугу в 30 градусов опирается вписанный угол В, который равен = 1/2 дуги АС равной 30 => угол В = 15
На дугу в 90 градусов опирается угол В = 1/2 дуги ДВ равную 90 =>
угол Д = 45
Следовательно сумма углов треугольника АОВ = 45+15+120 =180, где О центр пересечения хорд
Задача решена
ответ: градусная мера дуг, заключенных между сторонами угла 60 градусов равна 30 и 90 градусам.
КМ ║ТР║ АС⇒ соответственные углы, образованные при их пересечении секущей АВ, равны, а угол В для всех трех треугольников общий.
∆ АВС ~ ∆ТВР~∆ КВМ по двум углам, прилежащим к одной стороне.
АВ=3 части, ТВ=2 части. КР=1 часть.
Отношение площадей подобных фигур равно квадрату коэффициента их подобия.
АВ:ТВ=3:2=k₁
S ∆ ABC:S ∆ TBP=k₁²=9/4
AB:KB=3:1=k₂
S ∆ ABC:S ∆ KBM=k₂²=9/1
TB:KB=2:1=k₃
S ∆ ТВР: S∆ КВМ=k₃²=4/1