Простые задачи, не пойму пойму почему они вызвали у Вас затруднения.
1)
т.к. угол при меньшем основании равен 135, тогда при большем основании угол равен 45
У меня на рисунке меньшее основание сверху.
Опускаем высоту из меньшего основания на большее и получаем прямоугольный треугольник, т.к. угол равен 45 градусов, тогда и второй 45 градусов. Получается это равнобедренный прямоугольный треугольник.
Часть, которую отсекла высота у большего основания будет (5.4-4.2)/2=0.6. Это равнобедренный треугольник следовательно и высота будет 0.6
Sтрап=(а+б)/2 * h где а и б - основания
S= (4.2+5.4)/2 * 0.6
S=2.88
ответ: S=2.88
2)
решение этой задачи строится на теореме.
Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
Простые задачи, не пойму пойму почему они вызвали у Вас затруднения.
1)
т.к. угол при меньшем основании равен 135, тогда при большем основании угол равен 45
У меня на рисунке меньшее основание сверху.
Опускаем высоту из меньшего основания на большее и получаем прямоугольный треугольник, т.к. угол равен 45 градусов, тогда и второй 45 градусов. Получается это равнобедренный прямоугольный треугольник.
Часть, которую отсекла высота у большего основания будет (5.4-4.2)/2=0.6. Это равнобедренный треугольник следовательно и высота будет 0.6
Sтрап=(а+б)/2 * h где а и б - основания
S= (4.2+5.4)/2 * 0.6
S=2.88
ответ: S=2.88
2)
решение этой задачи строится на теореме.
Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
Следовательно h=20/2=10
S=20/2 * 10
S=100
ответ: S=100
Объяснение:
Воспользуемся формулой расстояния между двумя точками А и B на координатной плоскости с координатами А(х1;у1) и B(х2;у2):
|AB| = √((х1 - х2)² + (у1 - у2)²).
1) Найдем расстояние между точками A(-6;0) и B(0;8):
|AB| = √((-6 - 0)² + (0 - 8)²) = √((-6)² + (-8)²) = √(6² + 8²) = √(36 + 64) = √100 = 10.
Следовательно, расстояние между точками A(-6;0) и B(0;8) равно 10.
2) Найдем расстояние между точками M(8;0) и N(0;-6):
|MN| = √((8 - 0)² + (0 - (-6))²) = √((8)² + (-6)²) = √(8² +6²) = √(64 + 36) = √100 = 10.