Построить две перпендикулярные прямые с уголка. Обозначить их a и b. Провести ещё одну прямую c, перпендикулярную прямой b. Что можно сказать про взаимное расположение прямых a и c?
2. Верно ли утверждение, что, если прямые перпендикулярны, то смежные углы, образующиеся при их пересечении, равны? Докажите (с рисунком
10 см - меньшая сторона.
14 см - большая сторона.
Объяснение:
"Периметр прямоугольника 48 см. Найдите стороны прямоугольника, если одна из них на 4 см больше другой."
***
Пусть меньшая сторона прямоугольника равна x см. Тогда большая сторона равна x+4 см.
Периметр определяем по формуле:
P=2(a+b), где a=x см, а b=(x+4) см. Р=48 см.
2(х+х+4)=48;
2x+4=24;
2x=20;
а=x=10 см - меньшая сторона.
b=x+4=10+4=14 см - большая сторона.
Проверим:
2(10+14)=2*24=48 см - все верно.
***
На украинском:
Відповідь:
10 см-менша сторона.
14 см-велика сторона.
Пояснення:
"Периметр прямокутника 48 см. знайдіть сторони прямокутника, якщо одна з них на 4 см більше іншої."
***
Нехай менша сторона прямокутника дорівнює x см. тоді велика сторона дорівнює x + 4 см.
Периметр визначаємо за формулою:
P=2(a+b), де a=x см, а b=(x+4) см. р=48 см.
2 (х+х+4)=48;
2x+4=24;
2x=20;
а=x=10 см-менша сторона.
b=x + 4=10+4=14 см - велика сторона.
Перевірити:
2(10+14)=2*24=48 см - все вірно.
35113996
* * * * * * * * * * * * * * * * * * *
Без лишних слов ( эмоции )
R₁ =3√3* √3 /3 = 3 * * * R =(a√3/2)*2/3 =(a√3)/3 * * *
R₂ =4√3* √3 /3 = 4
R₁² = x (2R - x) ⇔x² - 2Rx + 9 = 0 ⇒ x₁ =R -√(R²- 9)
Маленький кусок диаметра x₁ =12 (между основания со стороной 3√3 и поверхностью шара) ( большой кусок x₂=R+ -√(R²- 9) )
Аналогично
R₂² = y (2R -y) ⇔ y² - 2Ry + 16=0 ⇒ y ₁ = R -√(R²- 16 )
x₁+ H + y₁ = 2R ⇔ R -√(R²- 9) + 7 + R -√(R²- 16) = 2R ⇔
R -√(R²- 9) + 7 + R -√(R²- 16) =2R ;
√(R²- 9) + √(R²- 16) =7 * * * ясно R =5 * * *
для сомневающихся (неужели нет другое решение ?)
примитивное иррациональное уравнение
необязательная замена t =R² > 0
√(t- 16) = 7 -√(t - 9) ⇔ t- 16 =49 -14√(t - 9) + t -9⇔ 14√(t - 9) =56 ⇔
t - 9 = 4² ⇔ t =25
R² =25 ⇒ R = 5 ( R = -5 построенное решение )
ответ : 5 см .
Изменение
добавил неповторимый пейзаж