По первому признаку подобия треугольников имеем, что данные равнобедр.треуг. подобны. Коэффициент их подобия равен как отношению соотв.сторон, так и отношению периметров. Найдем боковые стороны первого треугольника. Высота к основанию является также медианой, значит по теореме Пифагора боковая сторона равна кореньиз(64+36)=10. Периметр первого треугольника равен 10+10+16=36. Коэффициент подобия k=54/36=3/2=1,5. Значит боковые стороны второго равнобедр.треугольника равны 10*1,5=15 см, а основание равно 16*1,5=24 см.
Вписанный в правильную пирамиду шар касается основания пирамиды (в его центре и апофем пирамиды. То есть в сечении пирамиды по ее апофемам мы имеем равнобедренный треугольник со сторонами, равными апофкмам и основанием, равным стороне квадрата (основания). В этот треугольник вписана окружность (сечение шара). Есть формула радиуса вписанной в треугольник окружности: r=S/p, где S- площадь треугольника, а р - его полупериметр. Найдем высоту пирамиды по Пифагору: √(10²-6²)=8 (10 - апофема, 6 - половина стороны квадрата). Тогда площадь треугольника равна S=8*6=48. Тогда радиус вписанной в треугольник окружности равен r=S/p= 48/16 = 3. Это и есть радиус вписанного в пирамиду шара. Второй вариант: по формуле радиуса вписанной в равнобедренный треугольник окружности: r=(b/2)*√[(2a-b)/(2a+b)]. В нашем случае: r=6*√(1/4) = 3. Объем шара находим по формуле: V=(4/3)*π*r³ =36π. ответ V = 36π.
Есть формула радиуса вписанной в треугольник окружности: r=S/p, где S- площадь треугольника, а р - его полупериметр.
Найдем высоту пирамиды по Пифагору: √(10²-6²)=8 (10 - апофема, 6 - половина стороны квадрата). Тогда площадь треугольника равна S=8*6=48. Тогда радиус вписанной в треугольник окружности равен r=S/p= 48/16 = 3. Это и есть радиус вписанного в пирамиду шара.
Второй вариант: по формуле радиуса вписанной в равнобедренный треугольник окружности: r=(b/2)*√[(2a-b)/(2a+b)].
В нашем случае: r=6*√(1/4) = 3.
Объем шара находим по формуле: V=(4/3)*π*r³ =36π.
ответ V = 36π.