Если ∠В=150°, то ∠А=180°-∠В=180°-150°=30° диагонали АС и BD-пересекаются под прямым углом и делят ромб пополам, то есть АС и BD-биссектрисы, значит О-центр круга и ∠ВАО=30°/2=15° проведем радиус в точку касания Н. (радиус проведенный в точку касания перпендикулярен самой касательной) Значит ОН также является высотой ΔАВО проведенной из прямого угла АОВ, следовательно ΔАНО подобен ΔОНВ, ∠BAO=∠HOB=15° (ЕСЛИ ТЕКСТ НИЖЕ ПОЛНОСТЬЮ НЕ ОТОБРАЖАЕТСЯ, ТО ПОСМОТРИ СКРИН)
Площадь любого многоугольника в который можно вписать в окружность находится по формуле:
Смотри, из теоремы о сумме углов треугольника мы знаем, что сумма трех углов всегда равна 180. Отсюда можно сделать вывод, что не существует треугольника, в котором больше одного тупого угла (градусная мера больше 90) (например, угол 1-100 градусов, 2-95, 3-10, следовательно, 2 тупых угла. Сложим градусные меры всех углов. 100+95+10=205, что противоречит вышесказанной теореме, а значит, такого быть не может), в котором больше одного прямого угла (градусная мера равна 90) (приведу такой же пример: 1-90, 2-90, 3-10: 90+90+10=190, такого треугольника не сущ-ет)
К тому же, в прямоугольном треугольнике из 3 углов один равен 90, а на два других угла также приходится 90 градусов (например, один-30, другой-60/ 20, 70/ 10/80 и т.д.)-это первое свойство прямоугольного треугольника, которое также доказывает, что не может быть 2 прямых угла.
Если ∠В=150°, то ∠А=180°-∠В=180°-150°=30°
диагонали АС и BD-пересекаются под прямым углом и делят ромб пополам, то есть АС и BD-биссектрисы, значит О-центр круга и ∠ВАО=30°/2=15°
проведем радиус в точку касания Н. (радиус проведенный в точку касания перпендикулярен самой касательной)
Значит ОН также является высотой ΔАВО проведенной из прямого угла АОВ, следовательно ΔАНО подобен ΔОНВ, ∠BAO=∠HOB=15°
(ЕСЛИ ТЕКСТ НИЖЕ ПОЛНОСТЬЮ НЕ ОТОБРАЖАЕТСЯ, ТО ПОСМОТРИ СКРИН)
Площадь любого многоугольника в который можно вписать в окружность находится по формуле:
S=p*r, где p-полупериметр
p=4*AB/2=4*4k/2=8k
S=8k*k=8k²
ответ: 8k²
Смотри, из теоремы о сумме углов треугольника мы знаем, что сумма трех углов всегда равна 180. Отсюда можно сделать вывод, что не существует треугольника, в котором больше одного тупого угла (градусная мера больше 90) (например, угол 1-100 градусов, 2-95, 3-10, следовательно, 2 тупых угла. Сложим градусные меры всех углов. 100+95+10=205, что противоречит вышесказанной теореме, а значит, такого быть не может), в котором больше одного прямого угла (градусная мера равна 90) (приведу такой же пример: 1-90, 2-90, 3-10: 90+90+10=190, такого треугольника не сущ-ет)
К тому же, в прямоугольном треугольнике из 3 углов один равен 90, а на два других угла также приходится 90 градусов (например, один-30, другой-60/ 20, 70/ 10/80 и т.д.)-это первое свойство прямоугольного треугольника, которое также доказывает, что не может быть 2 прямых угла.