Пусть есть 2 пересекающиеся прямые, КМ и РТ. Точку их пересечения обозначим О. По трем точкам - КРО или МТО можно построить только одну плоскость. Поскольку точки К и М лежат на одной прямой, а Р и Т тоже на одной прямой, то обе этих прямых целиком принадлежат этой плоскости. Значит, плоскость КРО совпадает с плоскостью МТО, то есть обе прямые лежат в одной плоскости. Значит, все 4 точки лежат в одной плоскости, а это противоречит условию. Вывод: Если 4 точки не лежат в одной плоскости, то прямые, их соединяющие попарно, скрещивающиеся.
где AA и BB – некоторые числа. При этом коэффециенты AA и BB одновременно не равны нулю, так как тогда уравнение теряет смысл.
Если C=0C=0, а AA и BB отличны от нуля, то прямая проходит через через начало координат.
Если A=0A=0, а BB и CC отличны от нуля, то прямая параллельна оси OxOx.
Если B=0B=0, а AA и CC отличны от нуля, то прямая параллельна оси OyOy.
Если B=C=0B=C=0, а AA отличен от нуля, то прямая совпадает с осью OyOy.
Если A=C=0A=C=0, а BB отличен от нуля, то прямая совпадает с осью OxOx.
Пусть есть 2 пересекающиеся прямые, КМ и РТ. Точку их пересечения обозначим О. По трем точкам - КРО или МТО можно построить только одну плоскость. Поскольку точки К и М лежат на одной прямой, а Р и Т тоже на одной прямой, то обе этих прямых целиком принадлежат этой плоскости.
Значит, плоскость КРО совпадает с плоскостью МТО, то есть обе прямые лежат в одной плоскости.
Значит, все 4 точки лежат в одной плоскости, а это противоречит условию.
Вывод: Если 4 точки не лежат в одной плоскости, то прямые, их соединяющие попарно, скрещивающиеся.