Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
В четырехугольнике АВСД стороны АВ и СД параллельны и АВ=СД. Отсюда проведем диагональ, АС, разделяющую данный четырехугольник на 2 треугольника АВС и СДА. Эти треугольники равны по двум сторонам и углу между ними (АС общая сторона, АВ=СД по условию, угол1=углу2 как накрест лежащие углы при пересечении параллельных прямых АВ и Сд секущей АС), поэтому следует угол3=углу4. НО углы 3и4 накрест лежащие при пересечении прямых АД иВС секущей АС, отсюда следует АД ll ВС. Таким образом в четырехугольнике АВСД противоположные стороны попарно параллельны и значит четырехугольник АВСд- параллелограмм.