1. 1) Пусть ABCDA1B1C1D1 - прямоугольный параллелепипед, АВ=8 м, ВС=6 м, ВВ1=2,5 м. Sбок=Pосн*h=2*(АВ+ВС)*ВВ1=2*(8+6)*2,5=2*14*2,5=70 (м²). 2) Находим количество рулонов: 70:5=14 (рулонов). ответ: 14 рулонов.
2. 1) Пусть АВСА1В1С1 - правильная треугольная призма, ВС=3 м, СВ1=5 м. Площадь полной поверхности можно найти по формуле: Sполн=Sбок+2Sосн. 2) Площадь боковой поверхности находим по формуле: Sбок=P*h=3*ВС*ВВ1. Рассмотрим ΔСВВ1 - прямоугольный, по т. Пифагора ВВ1=√(СВ1²-СВ²)=√(5²-3²)=√(25-9)=√16=4 (м). Sбок=P*h=3*ВС*ВВ1=3*3*4=9*4=36 (м²). 3) Так как основание призмы правильный треугольник, то его площадь находим по формуле: S=a²√3/4=ВС²√3/4=3²√3/4=9√3/4 (м²). 4) Sполн=Sбок+2Sосн=36+2*9√3/4=36+9√3/2=9(4+√3/2) (м²). ответ: 9(4+√3/2) м².
Треугольник АВD-равнобедренный, так как Угол ВАD=углу ВDА=45. Тогда стороны АВ и ВD равны. Их находим по теореме Пифагора (кадрат гипотенузы АD=сумме квадратов катетов АВ и BD). Можно один из катето принять за х. Получится уравнение 36 в квадрате=х в квадрате+х в квадрате. Далее 1296=2х квадрате, 648=х в квадрате. х=корень из 648 (это любой из катетов.) Назовем высоту ВО, тогда треугольник АВО будет тоже равнобедренным (угол ВАО=углу АВО = 45) Гипотенузой в данном треугольнике будет сторона АВ = корень из 648. Тогда ВО находим как в предыдущем треугольнике корень из 648=х в квадрате+х в квадрате, 648=2х в квадрате, 324=х в квадрате х=18 Искомая высота - это катет ВО=18
1) Пусть ABCDA1B1C1D1 - прямоугольный параллелепипед, АВ=8 м, ВС=6 м, ВВ1=2,5 м.
Sбок=Pосн*h=2*(АВ+ВС)*ВВ1=2*(8+6)*2,5=2*14*2,5=70 (м²).
2) Находим количество рулонов:
70:5=14 (рулонов).
ответ: 14 рулонов.
2.
1) Пусть АВСА1В1С1 - правильная треугольная призма, ВС=3 м, СВ1=5 м. Площадь полной поверхности можно найти по формуле:
Sполн=Sбок+2Sосн.
2) Площадь боковой поверхности находим по формуле:
Sбок=P*h=3*ВС*ВВ1.
Рассмотрим ΔСВВ1 - прямоугольный, по т. Пифагора
ВВ1=√(СВ1²-СВ²)=√(5²-3²)=√(25-9)=√16=4 (м).
Sбок=P*h=3*ВС*ВВ1=3*3*4=9*4=36 (м²).
3) Так как основание призмы правильный треугольник, то его площадь находим по формуле:
S=a²√3/4=ВС²√3/4=3²√3/4=9√3/4 (м²).
4) Sполн=Sбок+2Sосн=36+2*9√3/4=36+9√3/2=9(4+√3/2) (м²).
ответ: 9(4+√3/2) м².
Треугольник АВD-равнобедренный, так как Угол ВАD=углу ВDА=45. Тогда стороны АВ и ВD равны. Их находим по теореме Пифагора (кадрат гипотенузы АD=сумме квадратов катетов АВ и BD). Можно один из катето принять за х. Получится уравнение 36 в квадрате=х в квадрате+х в квадрате. Далее 1296=2х квадрате, 648=х в квадрате. х=корень из 648 (это любой из катетов.) Назовем высоту ВО, тогда треугольник АВО будет тоже равнобедренным (угол ВАО=углу АВО = 45) Гипотенузой в данном треугольнике будет сторона АВ = корень из 648. Тогда ВО находим как в предыдущем треугольнике корень из 648=х в квадрате+х в квадрате, 648=2х в квадрате, 324=х в квадрате х=18 Искомая высота - это катет ВО=18