В усеченный конус можно вписать шар тогда и только тогда, когда образующая равна сумме радиусов оснований l=R+r, радиус шара Rш=H/2. Площадь боковой поверхности ус.конуса Sбок=πl(R+r)=πl² 10π=πl² l=√10 - это образующая Площадь полной поверхности ус.конуса Sполн=Sбок+πR²+πr² 18π=10π+π(R²+r²) R²+r²=8 Получается система уравнений: R+r=√10 R²+r²=8 R=√10-r (√10-r)²+r²=8 10-2√10r+r²+r²=8 r²-√10r+1=0 D=10-4=6 r=(√10-√6)/2 R=(√10+√6)/2 Теперь можно найти высоту усеченного конуса Н по т.Пифагора из прямоугольного треугольника, у которого гипотенуза l, 1 катет Н и 2 катет R-r=(√10+√6)/2-(√10-√6)/2=√6. Н²=l²-(R-r)²=√10²-√6²=4 H=2 Площадь поверхности шара Sш=4πRш²=4πН²/4=πН²=4π Разница Sполн-Sш=18π-4π=14π
Площадь боковой поверхности ус.конуса Sбок=πl(R+r)=πl²
10π=πl²
l=√10 - это образующая
Площадь полной поверхности ус.конуса Sполн=Sбок+πR²+πr²
18π=10π+π(R²+r²)
R²+r²=8
Получается система уравнений:
R+r=√10
R²+r²=8
R=√10-r
(√10-r)²+r²=8
10-2√10r+r²+r²=8
r²-√10r+1=0
D=10-4=6
r=(√10-√6)/2
R=(√10+√6)/2
Теперь можно найти высоту усеченного конуса Н по т.Пифагора из прямоугольного треугольника, у которого гипотенуза l, 1 катет Н и 2 катет
R-r=(√10+√6)/2-(√10-√6)/2=√6.
Н²=l²-(R-r)²=√10²-√6²=4
H=2
Площадь поверхности шара Sш=4πRш²=4πН²/4=πН²=4π
Разница Sполн-Sш=18π-4π=14π
(<BAO =<CAO ).
Из прямоугольного ΔABO :
AO² =AB²+BO² =(5√3)² +5²= 5²*3 +5² =5²(3+1) =5²*4 =(5*2)²;
AO =5*2=10.
BO =AO/5 ⇒ <BAO =30° (катет лежащий против угла 30 градусов равен половине гипотенузы)
<BAC =2*<BAO =2*30° =60°.
: .
<BAO =α ; <BAC =2<BAO =2α.
tqα =BO/AB = 5/5√3 =1/√3.⇒ α =30° ; <BAC =2α =2*30° =60°.