Квадрат — это прямоугольник у которого все стороны равны. Пусть диагонали AC и BD прямоугольника ABCD перпендикулярны и пересекаются в точке O. Диагонали прямоугольника равны и в точке пересечения делятся пополам, значит, OA=OB=OC=OD. Рассмотрим треугольники AOB и BOC. Треугольники являются прямоугольными и равны по двум катетам, поскольку AO=BO=CO. Тогда гипотенузы этих треугольников также равны, то есть, AB=BC. В прямоугольнике противоположные стороны равны, то есть, AB=CD, BC=AD. Но тогда все стороны прямоугольника равны, что и требовалось.
Биссектрисы ВМ и СМ, пересекаясь с точкой М, принадлежащей стороне АD, образуют треугольники со стороной АD и боковыми сторонами. Образованные треугольники равнобедренные. Рассмотрим треугольник АВМ. Углы АВМ и АМВ равны, т.к. угол АМВ равен углу МВС как внутренний накрест лежащий, а углы АВМ и МВС равны по условию (ВМ - биссектриса). Следовательно треугольник АВМ равнобедренный, и АВ=АМ. Аналогично доказываем, что СD=MD. Коль скоро АВ=CD как стороны параллелограмма, то АМ=МD, т.е. точка М есть середина АD.
Пусть диагонали AC и BD прямоугольника ABCD перпендикулярны и пересекаются в точке O. Диагонали прямоугольника равны и в точке пересечения делятся пополам, значит, OA=OB=OC=OD. Рассмотрим треугольники AOB и BOC. Треугольники являются прямоугольными и равны по двум катетам, поскольку AO=BO=CO. Тогда гипотенузы этих треугольников также равны, то есть, AB=BC. В прямоугольнике противоположные стороны равны, то есть, AB=CD, BC=AD. Но тогда все стороны прямоугольника равны, что и требовалось.
Рассмотрим треугольник АВМ. Углы АВМ и АМВ равны, т.к. угол АМВ равен углу МВС как внутренний накрест лежащий, а углы АВМ и МВС равны по условию (ВМ - биссектриса). Следовательно треугольник АВМ равнобедренный, и АВ=АМ. Аналогично доказываем, что СD=MD.
Коль скоро АВ=CD как стороны параллелограмма, то АМ=МD, т.е. точка М есть середина АD.