Построить равнобедренный треугольник по известному тупому углу в 135 градусов И известные боковой стороне строим только с циркуля и линейки выполняем подробное описание по пунктам
Если двугранные углы при ребрах основания равны (равны углы наклона боковых граней к плоскости основания), то высота пирамиды проецируется в центр окружности, вписанной в основание. В ромбе это точка пересечения диагоналей (точка О на рисунке).
Проведем ОН⊥CD. ОН - проекция наклонной SH на плоскость основания, тогда SH⊥CD по теореме о трех перпендикулярах. Значит
1.из предположения, что сечение, образующее уг.60, проходит ч\з диаметр основания:Рассмотрим тр.образующийся сечением по оси конуса-высота его разделит уг при вершине пополам=30,т.е. из прямоугольного треугольника, образованного радиусом-а, высотой конуса и образующей по т. Пифагора, с учетом, что катет против уг.30 равен 0.5 гипотенузы-т.е гипотенуза= 2а, находим радиус: а^2+(4*sqr(3))^2=4a^2 a=4,рассматривая прямоугольный треугольник по сечению с углом 120гр., отмечаем, что угол при вершине разделится высотой пополам и составит 60гр., т.е в данном тр.угол с основанием составит 30 гр и следовательно высота составит половину гипотенузы , поэтому т. Пифагора:(гип)^2=h^2+4^2 , h=4/sqr(3), S=0,5*4/SQR(3)*4=8/sqr(3)
Если двугранные углы при ребрах основания равны (равны углы наклона боковых граней к плоскости основания), то высота пирамиды проецируется в центр окружности, вписанной в основание. В ромбе это точка пересечения диагоналей (точка О на рисунке).
Проведем ОН⊥CD. ОН - проекция наклонной SH на плоскость основания, тогда SH⊥CD по теореме о трех перпендикулярах. Значит
∠SHO = 60° - линейный угол двугранного угла при ребре основания.
Периметр ромба 40 см, значит длина одной стороны ромба
CD = Pabcd/4 = 10 см.
КН - высота ромба.
Sabcd = CD · KH
KH = Sabcd / CD = 60 / 10 = 6 см
ОН = 1/2 КН = 3 см.
ΔSOH: ∠SOH = 90°,
SO = OH · tg∠SOH = 3 · √3 = 3√3 см
Объем пирамиды:
V = 1/3 Sabcd · SO = 1/3 · 60 · 3√3 = 60√3 см³
а^2+(4*sqr(3))^2=4a^2 a=4,рассматривая прямоугольный треугольник по сечению с углом 120гр., отмечаем, что угол при вершине разделится высотой пополам и составит 60гр., т.е в данном тр.угол с основанием составит 30 гр и следовательно высота составит половину гипотенузы , поэтому т. Пифагора:(гип)^2=h^2+4^2 , h=4/sqr(3), S=0,5*4/SQR(3)*4=8/sqr(3)