Построить сечение куба ABCDA1B1C1D1 плоскостью, проходящей через точки M, N,P, лежащие на рёбрах куба, где M∈AA1, N∈DD, P∈CD и DN>AM, DP>DN.
2)Построить сечение тетраэдра ABCS плоскостью, параллельной ребру SA и проходящей через точки E и F,где Е∈SC, F∈BC.
3)Построить сечение куба ABCD A1B1C1D1 плоскостью, проходящей через точку M∈C1D1 и диагональ нижнего основания как можно скорее
Відповідь:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
ОТВЕТ: 60°
Быстрое решение (пояснения писать обязательно нужно):
1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.
По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:
2) ∠BAC = 90° - 30° = 60°
ОТВЕТ: 60°
Пояснення:
Смотри картинку
Р=(30+4)*2=68
пусть уменьшенная длина будет 30-у
уменьшенная ширина 4-х
новая площадь должна равняться 120/2
новый периметр 68-22=46
полупериметр 46/2=23
составим систему с 2-мя неизвестными:
(30-у)(4-х)=120/2
(30-у)+(4-х)=46/2
(30-у)(4-х)=60
30-у+4-х=23
(30-у)(4-х)=60
х+у=11
(30-у)(4-х)=60 (1)
х=11-у (2)
подставляем наш х в (1)
получаем
(30-у)(4-х(11-у))=60
(30-у)(у-7)=60
30у-210-у²+7у-60=0
-у²+37у-270=0
Д=37²-4(-1)(-270)=1369-1080=289=17²
у1=-27 нам не подходит т.к. сторона не может быть отрицательной
у2=10
подставляем в (2)
х=11-у=11-10=1
ширину надо уменьшить на 10 см, длину на 1 см