Четырехугольник может быть описанным, если суммы противоположных сторон равны. Значит сумма боковых сторон трапеции равна 9-4=13. В равнобедренной трапеции боковые стороны равны. Значит боковая сторона равна 6,5. Высоты, проведенные из тупых углов трапеции, делят большее основание на отрезки 2,5, 4, 2,5. Применим теорему Пифагора к треугольнику, образованному боковой стороной трапеции, её высотой и отрезком большего основания трапеции.. Высота является катетом этого треугольника Н==6 Sтрапеции==39
<BAC=<DEC- это выполнялось бы . если треугольники были бы подобны и тогда CB=AB
Но по условию задачи AB>CB, поэтому <BAC≠<DEC
<DEC=<DCE=<ACB(последние 2 угла вертикальные, поэтому равны)
значит надо доказать что в ΔАВС <A меньше <ACB
по т синусов для треугольника АВС
AB/sin<ACB=CB/sin<A
так как AB>BC и синус угла-возрастает от 0 до 90 градусов, то
следует что делитель первой дроби больше делителя второй
Или sin<ACB больше sin<A-значит <ACB больше <A
и <CDE больше <BAC
Применим теорему Пифагора к треугольнику, образованному боковой стороной трапеции, её высотой и отрезком большего основания трапеции.. Высота является катетом этого треугольника
Н==6
Sтрапеции==39