Угол АОС - центральный, равен длине дуги, на которую он опирается. Опирается на АС, а она относится к Углу В, градусная мера которого 60. значит длина дуги АС = 60*2=120. <AOC=120. В сумме углы A + B + C =180 (свойство треугольника). Угол В нам дан, значит мы можем найти сумму двух других: A+C=180-B A+C=120. Нам дано отношение 5 к 7, но это отношение дуг. Значит умножим на 2 сумму углов, чтобы найти сумму длин дуг и разделим на на эти коэффициенты. 5k+7k=120*2 12k=240 k=20 Нам нужно найти угол А, а это половина дуги BC. BC=5k BC=50*20=100 100\2=50=угол А Тоже самое с углом С AB=7k AB=7*20=140 140\2=70=угол С
Сделаем проверку, <A+<B+<C=180 50+60+70=180. Всё верно
В сумме углы A + B + C =180 (свойство треугольника). Угол В нам дан, значит мы можем найти сумму двух других:
A+C=180-B
A+C=120.
Нам дано отношение 5 к 7, но это отношение дуг. Значит умножим на 2 сумму углов, чтобы найти сумму длин дуг и разделим на на эти коэффициенты.
5k+7k=120*2
12k=240
k=20
Нам нужно найти угол А, а это половина дуги BC. BC=5k
BC=50*20=100
100\2=50=угол А
Тоже самое с углом С
AB=7k
AB=7*20=140
140\2=70=угол С
Сделаем проверку, <A+<B+<C=180
50+60+70=180. Всё верно
ответ: <A=50, <C=70. <AOC=120
Рассмотрим прямоугольный ΔBCD
CD = 5√3 известный катет
BD - катет против угла в 30 градусов, его длина x
ВС - гипотенуза, её длина 2х
запишем теорему Пифагора для ΔBCD
(5√3)² + x² = (2x)²
25*3 + x² = 4x²
25*3 = 3x²
25 = x²
x = 5
BD = 5
BC = 2x = 10
---
Рассмотрим прямоугольный ΔABD
AD = 12 по условию, катет
BD = 5 из пункта, катет
AB - гипотенуза
по т. Пифагора
AB² = 5² + 12² = 25 + 144 = 169
AB = √169 = 13
---
Периметр ΔABC
P(ΔABC) = AB + BC + CD + AD = 13 + 10 + 5√3 + 12 = 35 + 5√3
---
теорема синусов для ∠A
sin(∠A)/BC = sin(∠C)/AB
sin(∠A)/10 = sin(30°)/13
sin(∠A) = 1/2 /13 * 10 = 5/13
∠A = arcsin(5/13) ≈ 22.6°
---
∠B найдём из того условия, что сумма всех углов треугольника равна 180°
∠B + ∠A + ∠C = 180°
∠B = 180 - ∠A - ∠C = 180 - 22.6 - 30 = 127.4°