Решаем на основании: сумма квадратов диагоналей параллелограмма равна сумме квадратов его четырех сторон. Вершину пирамиды обозначим буквой Е. Параллелограмм АВСД, где АС и ВД-диагонали параллелограмма. Формула АС2+ВД2=2(АВ2+ВС2). Из нее находим АС2=2(АВ2-ВС2) - ВД2=80. Тогда АС=корень квадратный из 80. Противоположные боковые ребра равны. Находим из теоремы Пифагора ребра ДЕ и ВЕ. ДЕ=ВЕ=корень квадратный из суммы 9 в квадрате+4 в квадрате=корень квадратный из 25=5см. Ребра АЕ=СЕ=корень квадратный из суммы (корень квадратный из 80, деленный на 2 в квадрате+ 4 в квадрате), получится корень квадратный из 36=6см.
0А=6см
Перпендикуляр и наклонные к
плосксти.
Объяснение:
Дано:
SA, SB - наклонные к
плоскости а
SO - перпендикуляр к а
SB=17см
ОВ=15см
SA=10см
------------------------------------
ОА - ?
SO - перпендикуляр к плос
кости а ==> SO перпендику
лярна прямым ОВ иОА.
Возможны 2 варианта:
1) точки SAОB лежат в одной
плоскости;
2) точки SAОB не лежат в од
ной плоскости.
Решение и ответ одинаковы
для обоих вариантов.
Рассмотрим треугольник SOB:
<SOB=90°
Треуг. SOB - прямоугольный.
По теореме Пифагора:
SO^2=SB^2-OB^2
Рассмотрим треугольник SOA:
<SOB=90°
Треуг. SOA - прямоугольный.
По теореие Пифагора:
OA^2=SA^2-SO^2
Oтвет:
ОА=6см