Около любого треугольника можно описать единственную окружность. Стороны треугольника - хорды этой окружности и делят ее на три части. Если взять точку D на дуге АВ, стягиваемой хордой АВ и провести из этой точки хорды DE или DF, не проходящие через точки А и В соответственно и через точку С (оговорено в условии), то эти хорды пересекут хорду АВ и дугу АС или ВС соответственно, а значит и хорды АС или ВС, стягивающие эти дуги. Так как через две точки можно провести только одну прямую, точку D можно взять в любом месте на прямых, содержащих хорды DE или DF.
Что и требовалось доказать.
P.S. Справедливо ТОЛЬКО для одной плоскости. Если точка D не будет принадлежать плоскости треугольника, то через нее можно провести прямые, пересекающие сторону АВ, но не пересекающие сторон АС или ВС.
DЕ параллельна АС, значит <DCA=<EDC (накрест лежащие углы при параллельных прямых). EF параллельна DC, значит <EDC=DEF (накрест лежащие углы при параллельных прямых). Треугольники DFE и ADC подобны по двум углам.Отсюда DF/AD=DE/AC (1). Треугольники АВС и DВЕ подобны по двум углам, так как <DAC=BDE (соответственные при параллельных АС и DE, а <B - общий ).Отсюда DЕ/AС=DВ/AВ (2). Из (1) и (2) имеем: DF/AD=DB/AB. Учитывая, что DВ=DF+FB, а АВ=AD+DB, и подставив известнве значения, 6/AD=10/(10+AD) Отсюда 60=4AD и AD=15см. ответ: AD=15см.
Объяснение:
Около любого треугольника можно описать единственную окружность. Стороны треугольника - хорды этой окружности и делят ее на три части. Если взять точку D на дуге АВ, стягиваемой хордой АВ и провести из этой точки хорды DE или DF, не проходящие через точки А и В соответственно и через точку С (оговорено в условии), то эти хорды пересекут хорду АВ и дугу АС или ВС соответственно, а значит и хорды АС или ВС, стягивающие эти дуги. Так как через две точки можно провести только одну прямую, точку D можно взять в любом месте на прямых, содержащих хорды DE или DF.
Что и требовалось доказать.
P.S. Справедливо ТОЛЬКО для одной плоскости. Если точка D не будет принадлежать плоскости треугольника, то через нее можно провести прямые, пересекающие сторону АВ, но не пересекающие сторон АС или ВС.
EF параллельна DC, значит <EDC=DEF (накрест лежащие углы при параллельных прямых).
Треугольники DFE и ADC подобны по двум углам.Отсюда
DF/AD=DE/AC (1).
Треугольники АВС и DВЕ подобны по двум углам, так как <DAC=BDE (соответственные при параллельных АС и DE, а <B - общий ).Отсюда
DЕ/AС=DВ/AВ (2). Из (1) и (2) имеем: DF/AD=DB/AB.
Учитывая, что DВ=DF+FB, а АВ=AD+DB, и подставив известнве значения,
6/AD=10/(10+AD) Отсюда 60=4AD и AD=15см.
ответ: AD=15см.