ответ:Задание 1
В равнобедренном треугольнике боковые стороны равны
Основание-Х
Одна сторона-3Х
Вторая -3Х
Х+3Х+3Х=70
7Х=70
Х=70:7=10
Основание-10 см
Обе боковые стороны по 30 см
10•3=30 см
Проверка
30+30+10=70 см
Задание 2
Треугольники АВD и ВDC равны между собой по третьему признаку равенства треугольников
АВ=ВС т к являются боковыми сторонами равнобедреного треугольника
BD-общая сторона
В равнобедренных треугольниках,если из вершины на основание опускается высота,то она одновременно является и биссектрисой,и медианой
Так вот-медиана поделила основание на две равные части
AD=DC
Следовательно треугольники равны,а значит периметр треугольника АВD равен периметру треугольника ВDC
Треугольник АВС состоит из двух треугольников
Периметр АВС=АВ+ВС+АС
Периметр АВС=АВD=BDC=
AD+AB+(BD)+BC+DC+(BD)
В скобках фигурирует высота,которую надо определить
(30+30-40):2=(60-40):2=20:2=10 см
Высота равна 10 сантиметров
Задание 3
Треугольники АВМ и NCB равны между собой по второму признаку равенства треугольников
АВ=ВМ,т к это боковые стороны равнобедреного треугольника
Углы ВАМ и ВСN равны между собой по условию задачи
А угол В у обоих треугольников общий
Из этого следует,что. AN=CM
Объяснение:
ответ:Задание 1
В равнобедренном треугольнике боковые стороны равны
Основание-Х
Одна сторона-3Х
Вторая -3Х
Х+3Х+3Х=70
7Х=70
Х=70:7=10
Основание-10 см
Обе боковые стороны по 30 см
10•3=30 см
Проверка
30+30+10=70 см
Задание 2
Треугольники АВD и ВDC равны между собой по третьему признаку равенства треугольников
АВ=ВС т к являются боковыми сторонами равнобедреного треугольника
BD-общая сторона
В равнобедренных треугольниках,если из вершины на основание опускается высота,то она одновременно является и биссектрисой,и медианой
Так вот-медиана поделила основание на две равные части
AD=DC
Следовательно треугольники равны,а значит периметр треугольника АВD равен периметру треугольника ВDC
Треугольник АВС состоит из двух треугольников
Периметр АВС=АВ+ВС+АС
Периметр АВС=АВD=BDC=
AD+AB+(BD)+BC+DC+(BD)
В скобках фигурирует высота,которую надо определить
(30+30-40):2=(60-40):2=20:2=10 см
Высота равна 10 сантиметров
Задание 3
Треугольники АВМ и NCB равны между собой по второму признаку равенства треугольников
АВ=ВМ,т к это боковые стороны равнобедреного треугольника
Углы ВАМ и ВСN равны между собой по условию задачи
А угол В у обоих треугольников общий
Из этого следует,что. AN=CM
Объяснение:
Рассмотрим треугольник АВС- он прямоугольный, равнобедренный, следовательно угол САВ= углу АВС=45градусам (сумма углов треугольника равна 180 градусам)
Аналогично в треугольниках АМС, МСК, КСВ, следовательно углы МАС= САВ= АВС= СВК= ВКС= СКМ= 45 градусов, следовательно угол А= углу В= углу К= углу М= 90 градусов, следовательно МАВК- прямоугольник.
Рассмотрим тоеугольники АВС и ВКС. Они прямоугольные и равны по катету и острому углу (или по 2 катетам), следовательно АВ=ВК=5см,следовательно МАВК- квадрат.
Площадь квадрата = а в квадрате, следовательно площадь АВКМ равна 5*5=25см квадратных.