Найдем площадь одного треугольника со сторонами 4 и 6 (т. к. диагонали параллелограмма делятся точкой пересечения пополам) и углом между ними 45: 1/2*(4*6*sin45)=12*корень из 2 деленное на 2=6* на корень из 2. Таких равных треугольников два поэтому 6 корень из двух умножаем на 2 получаем 12 корень из двух. Теперь найдем площадь треугольника со сторонами 4 и 6 ,но угол уже равен 180-45=135 градусов, т. е. 1/2 *(4*6*sin 135)=12*sin(90+45)=6 корень из двух и так как таких равных треугольников два, то умножаем на два получается то же самое 12 корень из двух. Теперь 12 корень из двух + 12 корень из двух получи 24 корень из двух. ответ площадь параллелограмма 24 корень из двух.
Заметим, что АВ = ВС = СА = А1В1 = А1С1 = В1С1 = r√3 (сторона правильного треугольника с заданым радиусом описанной окружности). Также AA1 = BB1 = CC1 = 2r. а) Р(АВС1) = АВ + ВС1 + С1А = АВ + √(ВС² + СС1²) + √(АС² + СС1²) = r√3 + 2r√7 = 50, отсюда находим r и высоту, равную 2r. б) Расстояние х от точки С1 до прямой АВ можно найти так: х = √(СС1² + СХ²) = 2,5r = 30, отсюда находим r и высоту, равную 2r. (Х - середина АВ). в) Возьмем треугольник из пункта а). В треугольнике АВС1 высота из точки В равна 5r√(3/28) = 20, отсюда r и 2r.
а) Р(АВС1) = АВ + ВС1 + С1А = АВ + √(ВС² + СС1²) + √(АС² + СС1²) = r√3 + 2r√7 = 50, отсюда находим r и высоту, равную 2r.
б) Расстояние х от точки С1 до прямой АВ можно найти так:
х = √(СС1² + СХ²) = 2,5r = 30, отсюда находим r и высоту, равную 2r. (Х - середина АВ).
в) Возьмем треугольник из пункта а). В треугольнике АВС1 высота из точки В равна 5r√(3/28) = 20, отсюда r и 2r.