Из треугольника СОВ угол В получается равен 90 - 20 = 70 градусов.
А если при пересечении двух прямых третьей окажется, что какие - нибудь накрест лежащие унглы равны, то эти прямые параллельны.
Прямые АД и СВ пересечены секущей АВ.
Но угол ОАД равен 70 и угол ОВС тоже равен 70.
А эти углы накрест лежащие.
Значит, прямые АД и СВ параллельны
2.
По свойству прямоугольного треугольника если катет прямоугольного треугольника равен половине гипотенузы, то угол лежащий напротив этого катета 30 градусов.
Т. е.
Вс - гипотенуза сс1катет и угол авс 30 градусовнайдем сав.
180 - (30 + 90) = 60.
3. Поскольку в равнобедренном треуг - ке медиана, проведенная к основанию, является и биссектрисой, и высотой, то из середины основания надо провести перпендикулярный ему отрезок заданной длины, а потомсоединить вершину этого отрезка с крайними точками основания.
4. Начерти круг.
В произвольной точке окружности установить циркуль и тем же радиусом сделать двсе засечки на окружность.
Даны две точки A и B, имеющие конкретные координаты.
Точка М имеет переменные координаты х и у: М(х; у).
Если обе части заданного выражения BM²- AM² = 2AB² разделить на 2AB², то получим уравнение:
(BM²/2AB²) - (AM²/2AB²) = 1.
Если в этом уравнении разнести координаты по х и по у, то получится уравнение гиперболы.
Выразим отрезки АМ, ВМ и АВ через координаты.
АМ = √((хМ - хА)² + (уМ - уА)²).
ВМ = √((хМ - хВ)² + (уМ - уВ)²).
АВ = √((хВ - хА)² + (уВ - уА)²).
Заданное множество точек соответствует уравнению:
((хМ - хА)² + (уМ - уА)²) - ((хМ - хВ)² + (уМ - уВ)²) =
= 2*((хВ - хА)² + (уВ - уА)²).
Если бы были известны координаты точек, то можно было бы определить уравнение для конкретных условий.
Вариант 1 по фото
Вариант 2
1. Если угол АОД = 90, то и угол СОВ равен 90, т.
Е. они вертикальные и равны.
Из треугольника СОВ угол В получается равен 90 - 20 = 70 градусов.
А если при пересечении двух прямых третьей окажется, что какие - нибудь накрест лежащие унглы равны, то эти прямые параллельны.
Прямые АД и СВ пересечены секущей АВ.
Но угол ОАД равен 70 и угол ОВС тоже равен 70.
А эти углы накрест лежащие.
Значит, прямые АД и СВ параллельны
2.
По свойству прямоугольного треугольника если катет прямоугольного треугольника равен половине гипотенузы, то угол лежащий напротив этого катета 30 градусов.
Т. е.
Вс - гипотенуза сс1катет и угол авс 30 градусовнайдем сав.
180 - (30 + 90) = 60.
3. Поскольку в равнобедренном треуг - ке медиана, проведенная к основанию, является и биссектрисой, и высотой, то из середины основания надо провести перпендикулярный ему отрезок заданной длины, а потомсоединить вершину этого отрезка с крайними точками основания.
4. Начерти круг.
В произвольной точке окружности установить циркуль и тем же радиусом сделать двсе засечки на окружность.
Соедини, эти две засечки с центром.
Полученный угол - 120 градусов.