Построить треугольник со сторонами 3,4 и 5 см. 2) увеличив длины сторон данного треугольника в несколько раз, построить соответствующий треугольник.
3) составьте соотношение сторон полученных треугольников.
ответьте на вопросы:
Можно ли данные треугольники назвать подобными?
Какими свойствами обладают данные треугольники?
Изменился ли вид треугольника в результате преобразования?
Что можно сказать о градусной мере углов?
Сумма углов выпуклого n-угольника вычисляется по формуле:
180° · (n - 2).
1.
а) n = 10
180° · (10 - 2) = 180° · 8 = 1440°
б) n = 12
180° · (12 - 2) = 180° · 10 = 1800°
2.
а) 1080° = 180° · (n - 2)
n - 2 = 1080° : 180°
n - 2 = 6
n = 8
б) 1320° = 180° · (n - 2)
n - 2 = 1320° : 180°
n - 2 = 7 1/3
так как n натуральное число, то многоугольника с суммой углов 1320° не существует.
в) 3960° = 180° · (n - 2)
n - 2 = 3960° : 180°
n - 2 = 22
n = 24
г) 1800° = 180° · (n - 2)
n - 2 = 1800° : 180°
n - 2 = 10
n = 12
Объяснение:
ПРОСТИТЕ ЕСЛИ НЕ ПРАВИЛЬНО
∠ВСА=∠САД как накрест лежащие при параллельных АД и ВС и секущей АС, значит углы при основаниях в тр-ках АВС и АСД равны.
ВМ⊥АС, СК⊥АД.
Пусть ∠ВАС=α, ВС=х, АС=у, тогда АМ=у/2, АД=ВС+СД=х+у.
В тр-ке АВМ АМ=АВ·cosα или у/2=х·cosα ⇒ y=2x·cosα.
В тр-ке АСК АК=АС·cosα или (х+у)/2=у·cosα,
(x+2x·cosα)/2=2x·cos²α,
x+2x·cosα=4x·cos²α, x сокращается,
4cos²α-2cosα-1=0, решаем как квадратное уравнение с неизвестным cosα ⇒⇒
cosα₁=(1-√5)/4, -1<х<0 - угол тупой
cosα₂=(1+√5)/4,
α=arccos(1+√5)/4=36°.
В трапеции АВСД:
∠А=2α=72°,
∠В=180-∠А=108°,
∠Д=α=36°,
∠С=180-∠Д=144° - это ответ.