Площадь полной поверхности равна сумме площадей боковой поверхности и двух площадей оснований. Площадь боковой поверхности равна периметру основания, умноженного на высоту призмы.
P = 36+29+25 = 90
Площадь основания (треугольника) находим по формуле Герона: Полупериметр p = P/2 = 45 p-a = 45-36 = 9 p-b = 45-29 = 16 p-c = 45-25 = 20
На каждом участке функция является непрерывной. Нужно выяснить непрерывность сопряжений соседних участков. Для этого нужно вычислить значения в сопрягаемой точке по формулам левого и правого участков. В случае непрерывной функции значения должны совпасть.
Площадь боковой поверхности равна периметру основания, умноженного на высоту призмы.
P = 36+29+25 = 90
Площадь основания (треугольника) находим по формуле Герона:
Полупериметр p = P/2 = 45
p-a = 45-36 = 9
p-b = 45-29 = 16
p-c = 45-25 = 20
S² = p(p-a)(p-b)(p-c) = 45*9*16*20 = 900*9*16
S = √(900*9*16) = 30*3*4 = 90*4 = 360
2S = 360*2 = 720
Т.о., площадь боковой поверхности равна 1620-720 = 900.
Высота призмы равна 900/90 = 10
ответ: высота призмы равна 10.
Нужно выяснить непрерывность сопряжений соседних участков.
Для этого нужно вычислить значения в сопрягаемой точке по формулам левого и правого участков. В случае непрерывной функции значения должны совпасть.
Сопряжение 1: ; x=0
y(0) = 0
y(0) = x = 0
Сопряжение 2: ; x=1
y(1) = x = 1
y(1) = -x²+4x-2 = -1²+4*1-2 = -1+4-2 = 1
Сопряжение 3: ; x=3
y(3) = -x²+4x-2 = -3²+4*3-2 = -9+12-2 = 1
y(3) = 4-x = 4-3 = 1
Как видно, во всех точках сопряжения левое и правое значение совпадают.
Значит, вся функция является непрерывной.