Боковая грань пирамиды, содержащия гипотенузу - равносторонний треугольник. Его сторона по теореме косинусов из равнобедренного треугольника с углом при вершине 120°
a² = 2R² - 2R²cos(120°)
a² = 2R² - 2R²(-1/2)
a² = 3R²
a = R√3
h - медиана треугольника, медианы делятся точкой пересечения в отношении 2 к 1 от угла, значит, высота
h = 3/2*R
Длина гипотенузы a
Катеты основания
a*sin(15)
a*cos(15)
Площадь основания
S = 1/2*a*sin(15)*a*cos(15) = 1/4*a²sin(30) = a²/8
∠DAB=∠DBA=0,5*∠CAB=0,5*∠CBA (т.к. AE и BF биссектрисы и ∠CAB=∠CBA)
Пусть ∠DAB=∠DBA=x:
180°-100°=2x
80=2x
x=40
∠DAB=∠DBA=40°
40°=0,5*∠CAB=0,5*∠CBA
∠CAB=∠CBA=80°
∠ACB=180°-∠CAB-∠CBA=180°-80°-80°=20°
⸻⸻⸻⸻⸻⸻⸻⸻
2)
⸻⸻⸻⸻⸻⸻⸻⸻
∆ABO, ∆COD – прямоугольные (т.к. ∠BAO=∠CDO=90°)
AO=OD (т.к. O – середина отрезка AD)
Если бы AB=DC, то ∆ABO=∆COD (по двум катетам) ⇒ OB=OC, но точка B может находиться на любом расстоянии от точки A, и точка C может находиться на любом расстоянии от точки D, поэтому доказать это невозможно.
ответ:Радиус описанной окружности основания r
Гипотенуза основания - диаметр этой окружности
Высота пирамиды опирается на середину гипотенузы
Боковая грань пирамиды, содержащия гипотенузу - равносторонний треугольник. Его сторона по теореме косинусов из равнобедренного треугольника с углом при вершине 120°
a² = 2R² - 2R²cos(120°)
a² = 2R² - 2R²(-1/2)
a² = 3R²
a = R√3
h - медиана треугольника, медианы делятся точкой пересечения в отношении 2 к 1 от угла, значит, высота
h = 3/2*R
Длина гипотенузы a
Катеты основания
a*sin(15)
a*cos(15)
Площадь основания
S = 1/2*a*sin(15)*a*cos(15) = 1/4*a²sin(30) = a²/8
S = 3R²/8
Объём пирамиды
V = 1/3*S*h = R²/8*3/2*R = 3R³/8 см³
V = 3*6³/8 = 3*3³ = 81 см³
Объяснение:
1) 80°, 80°, 20°
2) Доказать невозможно
Объяснение:
Сумма всех углов треугольника – 180°
Биссектриса делит угол пополам
1)⸻⸻⸻⸻⸻⸻⸻⸻
∠DAB=∠DBA=0,5*∠CAB=0,5*∠CBA (т.к. AE и BF биссектрисы и ∠CAB=∠CBA)
Пусть ∠DAB=∠DBA=x:
180°-100°=2x
80=2x
x=40
∠DAB=∠DBA=40°
40°=0,5*∠CAB=0,5*∠CBA
∠CAB=∠CBA=80°
∠ACB=180°-∠CAB-∠CBA=180°-80°-80°=20°
⸻⸻⸻⸻⸻⸻⸻⸻
2)⸻⸻⸻⸻⸻⸻⸻⸻
∆ABO, ∆COD – прямоугольные (т.к. ∠BAO=∠CDO=90°)
AO=OD (т.к. O – середина отрезка AD)
Если бы AB=DC, то ∆ABO=∆COD (по двум катетам) ⇒ OB=OC, но точка B может находиться на любом расстоянии от точки A, и точка C может находиться на любом расстоянии от точки D, поэтому доказать это невозможно.
⸻⸻⸻⸻⸻⸻⸻⸻