AB=6cм, ВС=10 см, BH=8 cм AB=CD=6 см, BC=AD=10 см (протвоположные стороны параллелограмма равны)
если точка H лежит на стороне AD, K на CD (рисунок) Площадь параллелограмма равна произвеедению его стороны на высоту, опущенную на эту сторону S=AD*BK=CD*BH Отсюда BH=AD*BK/CD BH=10*8/6=40/3 см=13 1/3 cм
если точка K лежит на стороне AD, H на CD (рисунок аналогичный только точки Н и К поменять местами) Площадь параллелограмма равна произвеедению его стороны на высоту, опущенную на эту сторону S=AD*BH=CD*BK Отсюда BH=CD*BK/AD BH=6*8/10=4.8 см
AB=CD=6 см, BC=AD=10 см (протвоположные стороны параллелограмма равны)
если точка H лежит на стороне AD, K на CD (рисунок)
Площадь параллелограмма равна произвеедению его стороны на высоту, опущенную на эту сторону
S=AD*BK=CD*BH
Отсюда BH=AD*BK/CD
BH=10*8/6=40/3 см=13 1/3 cм
если точка K лежит на стороне AD, H на CD (рисунок аналогичный только точки Н и К поменять местами)
Площадь параллелограмма равна произвеедению его стороны на высоту, опущенную на эту сторону
S=AD*BH=CD*BK
Отсюда BH=CD*BK/AD
BH=6*8/10=4.8 см
Объяснение:
1)
фото чертежа прилагаю.
Проведём высоту ВК.
sin 30°=BK/BC
1/2=BK/12
BK=12/2=6 см .
S(ABCD)=BK*(AB+DC)/2=6*(6+16)/2=
=6*11=66 см² площадь трапеции.
ответ: 66см²
2)
∆АВС- равносторонний по условию.
АВ=ВС=АВ.
Формула нахождения периметра равностороннего треугольника
Р=3*АВ
АВ=Р/3=18/3=6 см сторона треугольника.
S=AH*BC/2=3*6/2=9 см². площадь треугольника
ответ: площадь треугольника равна 9см²
3)
1) 80:2=40см полупериметр прямоугольника (АВ+ВС)
2) пусть сторона АВ=2х см, тогда сторона ВС=6х. Составляем уравнение.
2х+6х=40
8х=40
х=40/8
х=5
АВ=2х, подставляем значение х.
2*5=10см сторона АВ.
ВС=6х, подставляем значение х.
6*5=30 см сторона ВС
S=AB*BC=10*30=300см² площадь прямоугольника АВСD
ответ: 300см²