ответ:1) так как треугольник АBC равно едренный => BD- медиана, высота, биссектриса=> угол ADB=90 градусов;
Так как BD- биссектриса=>угол ABD= углу DBС= угол ABC/2=78/2=39 градусов
ответ:90;39
2)так как D-середина AB=>BD=AD; так как Е-середина ВС=>СЕ=ВЕ; так как AD=EC=>BD=AD=CE=BE и AB=BC;
Треуголники АВЕ и СDB равны по двум сторонам и углу сежду ними(DB=BE; AB=BC; угол В- общий) Ч. Т. Д.
3)треугольники ОАВ и СОD равны по двум углам и ребру между ними ( OA=OC- по условию; угол А=углу С- по условию; угол О- общий) Ч. Т. Д.;
Так как треуголники равны=> у них все ребра тоже равны=> АВ=DC=15см
ответ: 15см
Объяснение:
Дано:
АС=7 см;
АВ=25 см;
ВС=24 см.
СО – высота, проведенная к АВ.
Высота, пересекаясь со стороной, к которой проведена, образует прямой угол.
То есть угол ВОС=90° и угол АОС=90°.
Следовательно ∆ВОС – прямоугольный с прямым углом ВОС и ∆АОС – прямоугольный с прямым углом АОС.
Пусть АО=х, тогда ВО=АВ–АО=25–х.
По теореме Пифагора в прямоугольном треугольнике ВОС:
ВС²=ВО²+СО²
СО²=ВС²–ВО²
СО²=24²–(25–х)²
СО²=576–625+50х–х²)
СО²=–х²+50х–49 (Ур 2)
По теореме Пифагора в прямоугольном треугольнике АОС:
АС²=АО²+СО²
СО²=АС²–АО²
СО²=7²–х²
СО²=49–х² (Ур 2)
Тогда можем составить уравнение, объединив Ур 1 и Ур 2, получим:
–х²+50х–49=49–х²
50х=98
х=1,96
Тоесть АО=1,96 см.
Подставим значение АО и известное значение АС в уравнение СО²=АС²–АО², получим:
СО²=49–3,8416
СО²=45,1584
СО=6,72 см.
ответ: 6,72 см.
ответ:1) так как треугольник АBC равно едренный => BD- медиана, высота, биссектриса=> угол ADB=90 градусов;
Так как BD- биссектриса=>угол ABD= углу DBС= угол ABC/2=78/2=39 градусов
ответ:90;39
2)так как D-середина AB=>BD=AD; так как Е-середина ВС=>СЕ=ВЕ; так как AD=EC=>BD=AD=CE=BE и AB=BC;
Треуголники АВЕ и СDB равны по двум сторонам и углу сежду ними(DB=BE; AB=BC; угол В- общий) Ч. Т. Д.
3)треугольники ОАВ и СОD равны по двум углам и ребру между ними ( OA=OC- по условию; угол А=углу С- по условию; угол О- общий) Ч. Т. Д.;
Так как треуголники равны=> у них все ребра тоже равны=> АВ=DC=15см
ответ: 15см
Объяснение:
Дано:
АС=7 см;
АВ=25 см;
ВС=24 см.
СО – высота, проведенная к АВ.
Высота, пересекаясь со стороной, к которой проведена, образует прямой угол.
То есть угол ВОС=90° и угол АОС=90°.
Следовательно ∆ВОС – прямоугольный с прямым углом ВОС и ∆АОС – прямоугольный с прямым углом АОС.
Пусть АО=х, тогда ВО=АВ–АО=25–х.
По теореме Пифагора в прямоугольном треугольнике ВОС:
ВС²=ВО²+СО²
СО²=ВС²–ВО²
СО²=24²–(25–х)²
СО²=576–625+50х–х²)
СО²=–х²+50х–49 (Ур 2)
По теореме Пифагора в прямоугольном треугольнике АОС:
АС²=АО²+СО²
СО²=АС²–АО²
СО²=7²–х²
СО²=49–х² (Ур 2)
Тогда можем составить уравнение, объединив Ур 1 и Ур 2, получим:
–х²+50х–49=49–х²
50х=98
х=1,96
Тоесть АО=1,96 см.
Подставим значение АО и известное значение АС в уравнение СО²=АС²–АО², получим:
СО²=49–3,8416
СО²=45,1584
СО=6,72 см.
ответ: 6,72 см.