1) Средняя линия треугольника, соединяющая середины двух сторон, параллельна третьей стороне и равна ее половине. В данном треугольнке средняя линия параллельна основанию и равна его половине ⇒ длина основания равна 2*5 = 10 (см)
2) В прямоугольном треугольнике ABC: AB - гипотенуза BC - катет, противолежащий углу 48 градусов AC = 4см, - катет прилежащий углу 48 градусов ∠BAC = 48°
Катет BC можно найти с тангенса известного угла BAC. Тангенсом острого угла прямоугольного треугольника является отношение противолежащего этому углу катета BC к прилежащему AC. BC tg(BAC) = ⇒ BC = AC * tg(BAC) AC
По таблице Брадиса определяем, что тангенсу 48° соответствует величина 1,11061
BC = AC * 1,11061 BC = 4 * 1,11061 = 4, 44244 ≈ 4,5 (cм)
1) центр вписанной в треугольник окружности-точка пересечения биссектрис, т.к. треугольник равнобедренный, биссектриса к основанию будет и высотой, часть этой высоты будет радиусом окружности, т.к. радиус, проведенный в точку касания, перпендикулярен касательной)) т.е. высота треугольника известна, осталось найти основание... известно: биссектриса угла треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам. по т.Пифагора можно найти основание))) 2) сумма неравных углов параллелограмма=180° (это односторонние углы), противоположные углы параллелограмма равны))) если обозначить угол (х), например, то второй острый угол прямоугольного треугольника, образованного высотой параллелограмма, будет =90°-х из несложного равенства становится очевидно, что угол между высотами равен углу параллелограмма))) площадь параллелограмма=произведению двух сторон на синус угла между ними.
2) В прямоугольном треугольнике ABC:
AB - гипотенуза
BC - катет, противолежащий углу 48 градусов
AC = 4см, - катет прилежащий углу 48 градусов
∠BAC = 48°
Катет BC можно найти с тангенса известного угла BAC. Тангенсом острого угла прямоугольного треугольника является отношение противолежащего этому углу катета BC к прилежащему AC.
BC
tg(BAC) = ⇒ BC = AC * tg(BAC)
AC
По таблице Брадиса определяем, что тангенсу 48° соответствует величина 1,11061
BC = AC * 1,11061
BC = 4 * 1,11061 = 4, 44244 ≈ 4,5 (cм)
т.е. высота треугольника известна, осталось найти основание...
известно: биссектриса угла треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам.
по т.Пифагора можно найти основание)))
2)
сумма неравных углов параллелограмма=180° (это односторонние углы), противоположные углы параллелограмма равны)))
если обозначить угол (х), например, то второй острый угол прямоугольного треугольника, образованного высотой параллелограмма, будет =90°-х
из несложного равенства становится очевидно, что угол между высотами равен углу параллелограмма)))
площадь параллелограмма=произведению двух сторон на синус угла между ними.