Постройте циркулем окружность с центром в точке D, ра- диус которой равен отрезку DА. Определите, какие из то- чек A, B, C, D, Клежат на окружности, какие внутри окружности, а какие — вне окружности.
Рассмотрим прямоугольные треугольники ABC и DEF с прямыми углами C и F, у которых AC = DF, M и N — середины AC и DF соответственно, BM = EN.
Поскольку AC = DF, CM = AC / 2, FN = DF / 2, то CM = FN. Рассмотрим треугольники BCM и EFN. Они прямоугольные, CM = FN по доказанному, BM = EN по условию. Тогда треугольники BCM и EFN равны по катету и гипотенузе, а значит, BC = EF.
Рассмотрим треугольники ABC и DEF. Они прямоугольные, AC = DF по условию, BC = EF по доказанному. Значит, они равны по двум катетам, что и требовалось доказать.
Обозначим вершины трапеции аbcd ad=34 bc=2 проведём диагональ ас и опустим высоту сн. трапеция равнобокая dн=(аd-bc)/2=16 ac пересекает параллельные прямые аd и bc поэтому накрест лежащие углы равны . угол саd равен углу асв. кроме того са биссектриса угла всd . поэтому cad также равен углу асd. рассмотрим треугольник асd. в нем мы только что установили что угол а равен углу с. поэтому аd равно dc = 34 теперь рассмотрим треугольник снd. он прямоугольный . угол н прямой. dc=34 dh=16 по теореме пифагора ch = √(34^2-16^2)= 30 площадь трапеции - средняя линия (аd+bc)/2= 18 умножить на найденную высоту сн=30 - равна 540 см^2
Рассмотрим прямоугольные треугольники ABC и DEF с прямыми углами C и F, у которых AC = DF, M и N — середины AC и DF соответственно, BM = EN.
Поскольку AC = DF, CM = AC / 2, FN = DF / 2, то CM = FN. Рассмотрим треугольники BCM и EFN. Они прямоугольные, CM = FN по доказанному, BM = EN по условию. Тогда треугольники BCM и EFN равны по катету и гипотенузе, а значит, BC = EF.
Рассмотрим треугольники ABC и DEF. Они прямоугольные, AC = DF по условию, BC = EF по доказанному. Значит, они равны по двум катетам, что и требовалось доказать.