Крч провели мы эти линии и получили несколько паралеллогрмаммов (я наверное ушла не в ту степь, но пофиг), а у них противоположные стороны равны. Так мы нашли отрезки В1В, ВА1, А1С, СС1, С1А, АВ1. Мы видим, что каждая прямая состоит из двух одинаковых отрезков, равных одной из сторон исходного треугольника, значит каждая сторона ⚠︎С1В1А1 в два раза больше параллельно лежащей стороны ⚠︎АВС, следовательно периметр С1В1А1 будет в два раза больше, чем у АВС
На фото можно увидеть решение( "дано" не будет оно приняло ислам)
Объяснение:
Я не очень умею объяснять, но попробую
Крч провели мы эти линии и получили несколько паралеллогрмаммов (я наверное ушла не в ту степь, но пофиг), а у них противоположные стороны равны. Так мы нашли отрезки В1В, ВА1, А1С, СС1, С1А, АВ1. Мы видим, что каждая прямая состоит из двух одинаковых отрезков, равных одной из сторон исходного треугольника, значит каждая сторона ⚠︎С1В1А1 в два раза больше параллельно лежащей стороны ⚠︎АВС, следовательно периметр С1В1А1 будет в два раза больше, чем у АВС
На фото можно увидеть решение( "дано" не будет оно приняло ислам)
Точка, назовём её С(х;у;z) равноудалена от точек А(1,2,3) и В(-3,3,2).
Это означает, что расстояние АС равно расстоянию ВС.
Точка С принадлежит оси ОХ, значит её координаты равны (х;0;0)
Расстояние между точками можно определить по формуле:
sqr((x2-x1)^2+(y2-y1)^2+(z1-z2)^2), значит
sqr((х-1)^2+(0-2)^2+(0-3)^2)=sqr((x+3)^2+(0-3)^2+(0-2)^2)
(x-1)^2+4+9=(x+3)^2+9+4
(x-1)^2=(x+3)^2
x^2-2x+1=x^2+6x+9
-8x=8
x=-1
Итак, искомая точка, равноудалённая от А и В имеет координаты
С(-1;0;0)