Для нахождения площади этого треугольника можно применить две формулы: 1)S=a•h:2, где а - сторона, h- высота, которая к ней проведена. Пусть ∠А=30° Тогда высота ВН, как катет прямоугольного треугольника ВНА, противолежащий этому углу, равна половине АВ. ВН=4,5⇒ S=12•4,5:2=27 см² или, если провести высоту СН1 к стороне АВ ( тогда она пересечется с продолжением АВ) СН1=АС:2=6 S=AB•CH1:2=9•6:2=27см² –––––––––– 2) S= 0,5•a•b•sinα, где a и b - стороны треугольника. α- угол между ними S (ABC)=0,5•AB•AC•sin30º S=0,5•9•12=27см²
1)S=a•h:2, где а - сторона, h- высота, которая к ней проведена.
Пусть ∠А=30°
Тогда высота ВН, как катет прямоугольного треугольника ВНА, противолежащий этому углу, равна половине АВ.
ВН=4,5⇒
S=12•4,5:2=27 см²
или,
если провести высоту СН1 к стороне АВ ( тогда она пересечется с продолжением АВ)
СН1=АС:2=6
S=AB•CH1:2=9•6:2=27см²
––––––––––
2) S= 0,5•a•b•sinα, где a и b - стороны треугольника. α- угол между ними
S (ABC)=0,5•AB•AC•sin30º
S=0,5•9•12=27см²
∠А=70°, ∠В=110°, ∠С=70°, ∠D=110°
Объяснение:
Противоположные стороны выпуклого четырехугольника попарно параллельны (по условию). Значит этот четырехугольник - параллелограмм.
Сумма всех углов параллелограмма равна 360°. Значит, ∠А+∠С=360°-(∠В+∠D)=360-220=140°
Противоположные углы параллелограмма равны.
∠В и ∠D - противоположные, значит, они равны, а раз их сумма равна 220°, то каждый из них равен 220/2=110°
∠А и ∠С -противоположные, значит, они тоже равны между собой, их сумма равна 140° и каждый из них равен 140/2=70°