Из любой точки, не лежащей на данной прямой, можно опустить на эту прямую перпендикуляр, и притом только один.
Доказательство: предположим, что на плоскости, которой принадлежат и прямая, и точка, таких перпендикуляров существует два. Поскольку точка вне прямой принадлежит обоим перпендикулярам, получаем треугольник с вершиной в этой точке и основанием, расположенном на прямой. Так как оба перпендикуляра составляют с прямой углы по 90° (углы при основании треугольника) плюс угол при вершине, то сумма внутренних углов такого треугольника получается больше 180°, - а это на плоскости осуществить невозможно. Следовательно, наше предположение о том, что через одну точку к данной прямой на плоскости можно провести больше одного перпендикуляра, - не верно и такой перпендикуляр существует только один. Теорема доказана.
PS построения не сложные. - прямая, 2 точки на ней, одна точка вне прямой и два отрезка, соединяющие эту точку с точками на прямой..))) Но, если очень надо, - то файлик внизу с рисунком..)) И еще. Упоминание о том, что все это происходит на плоскости, - желательно. Дело в том, что всем нам с детства знакомы меридианы на географической сетке Земного шара. Так вот каждый меридиан перпендикулярен экватору, и все меридианы сходятся аж в двух точках : в Северном и Южном полюсах
Теорема: сумма углов треугольников равно 180градусов. Док-во:Рассмотрим произвольный треугольник АВС и докажем,что угол А+угол В+угол С=180 градусов. Проведем через вершину В прямую "а",параллельную стороне АС. Углы 1 и 4 являются накрест лежащими углами при параллельных прямых "а" и АС секущей АВ, а углы 3 и 5 - накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому угол 4=углу 1, угол 5= углу 3. Очевидно,сумма углов 4,2 и 5 равна развернутому углу с вершиной В, т.е. угол 4+угол 2+угол 5=180 градусам. Отсюда,учитывая равенства,получаем: угол 1+угол 2+угол 3=180градусам. Теорема Доказана.
Доказательство: предположим, что на плоскости, которой принадлежат и прямая, и точка, таких перпендикуляров существует два. Поскольку точка вне прямой принадлежит обоим перпендикулярам, получаем треугольник с вершиной в этой точке и основанием, расположенном на прямой. Так как оба перпендикуляра составляют с прямой углы по 90° (углы при основании треугольника) плюс угол при вершине, то сумма внутренних углов такого треугольника получается больше 180°, - а это на плоскости осуществить невозможно. Следовательно, наше предположение о том, что через одну точку к данной прямой на плоскости можно провести больше одного перпендикуляра, - не верно и такой перпендикуляр существует только один. Теорема доказана.
PS построения не сложные. - прямая, 2 точки на ней, одна точка вне прямой и два отрезка, соединяющие эту точку с точками на прямой..))) Но, если очень надо, - то файлик внизу с рисунком..)) И еще. Упоминание о том, что все это происходит на плоскости, - желательно. Дело в том, что всем нам с детства знакомы меридианы на географической сетке Земного шара. Так вот каждый меридиан перпендикулярен экватору, и все меридианы сходятся аж в двух точках : в Северном и Южном полюсах
Док-во:Рассмотрим произвольный треугольник АВС и докажем,что угол А+угол В+угол С=180 градусов. Проведем через вершину В прямую "а",параллельную стороне АС. Углы 1 и 4 являются накрест лежащими углами при параллельных прямых "а" и АС секущей АВ, а углы 3 и 5 - накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому угол 4=углу 1, угол 5= углу 3. Очевидно,сумма углов 4,2 и 5 равна развернутому углу с вершиной В, т.е. угол 4+угол 2+угол 5=180 градусам. Отсюда,учитывая равенства,получаем: угол 1+угол 2+угол 3=180градусам. Теорема Доказана.