Задача сводится к решению планиметрической задачи на отыскание радиуса круга, вписанного в осевое сечение конуса, т.к. осевое сечение - равнобедренный треугольник, боковые стороны которого — образующие конуса, а основание — его диаметр . Вписанный в этот треугольник круг - это круг, радиус которого равен радиусу шара.
поэтому чтобы найти радиус шара, достаточно найти радиус круга, вписанного в треугольник. он равен частному от деления площади треугольника на полупериметр треугольника. Если в треугольнике опустить высоту на основание, то она равна √(17²-8²) =√(25*9)=15/см/, площадь треугольника равна 15*8=120/см²/, а полупериметр (2*17+2*8)/2=17+8=25, искомый радиус 120/25=24/5=4.8/см/
У нас есть правильная четырёхугольная пирамида SABCD (S вершина),в основании которой лежит правильный четырекутник (квадрат).Также у нас есть апофема,проведеная з вершини S боковой грани и высота пирамиды.
1)Проводим от нижней точки высоты до боковой грани радиус правильного квадрата
2)Ищем сторону ОК из трехугольника SOK за теоремой Пифагора:
OK²=SK²-SO²
OK²=13²-12²
OK²=169-144
OK²=25
OK=5 ( см)
3)Далле если мы нашли радиус,то согласно правилу:
Радиус вписаной окружности в квадрат равно половины его стороны
Задача сводится к решению планиметрической задачи на отыскание радиуса круга, вписанного в осевое сечение конуса, т.к. осевое сечение - равнобедренный треугольник, боковые стороны которого — образующие конуса, а основание — его диаметр . Вписанный в этот треугольник круг - это круг, радиус которого равен радиусу шара.
поэтому чтобы найти радиус шара, достаточно найти радиус круга, вписанного в треугольник. он равен частному от деления площади треугольника на полупериметр треугольника. Если в треугольнике опустить высоту на основание, то она равна √(17²-8²) =√(25*9)=15/см/, площадь треугольника равна 15*8=120/см²/, а полупериметр (2*17+2*8)/2=17+8=25, искомый радиус 120/25=24/5=4.8/см/
100 (см²)
Объяснение:
У нас есть правильная четырёхугольная пирамида SABCD (S вершина),в основании которой лежит правильный четырекутник (квадрат).Также у нас есть апофема,проведеная з вершини S боковой грани и высота пирамиды.
1)Проводим от нижней точки высоты до боковой грани радиус правильного квадрата
2)Ищем сторону ОК из трехугольника SOK за теоремой Пифагора:
OK²=SK²-SO²
OK²=13²-12²
OK²=169-144
OK²=25
OK=5 ( см)
3)Далле если мы нашли радиус,то согласно правилу:
Радиус вписаной окружности в квадрат равно половины его стороны
r=a/2
отсюда
а=2r
a=5×2=10 (см)-сторона квадрата
4)Находим площадь основания квадрата
S=a²
S=10²=100 (см²)